Skip to content

Commit 1480bec

Browse files
committed
code and comments fixed: subroutine name
1 parent b802a7d commit 1480bec

File tree

4 files changed

+49
-49
lines changed

4 files changed

+49
-49
lines changed

TESTING/EIG/cchkhb2stg.f

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
*> \brief \b CCHKHBSTG
1+
*> \brief \b CCHKHB2STG
22
*
33
* =========== DOCUMENTATION ===========
44
*
@@ -8,9 +8,9 @@
88
* Definition:
99
* ===========
1010
*
11-
* SUBROUTINE CCHKHBSTG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
11+
* SUBROUTINE CCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
1212
* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
13-
* D2, D3, U, LDU, WORK, LWORK, RWORK RESULT,
13+
* D2, D3, U, LDU, WORK, LWORK, RWORK RESULT,
1414
* INFO )
1515
*
1616
* .. Scalar Arguments ..
@@ -31,18 +31,18 @@
3131
*>
3232
*> \verbatim
3333
*>
34-
*> CCHKHBSTG tests the reduction of a Hermitian band matrix to tridiagonal
34+
*> CCHKHB2STG tests the reduction of a Hermitian band matrix to tridiagonal
3535
*> from, used with the Hermitian eigenvalue problem.
3636
*>
3737
*> CHBTRD factors a Hermitian band matrix A as U S U* , where * means
3838
*> conjugate transpose, S is symmetric tridiagonal, and U is unitary.
3939
*> CHBTRD can use either just the lower or just the upper triangle
40-
*> of A; CCHKHBSTG checks both cases.
40+
*> of A; CCHKHB2STG checks both cases.
4141
*>
4242
*> CHETRD_HB2ST factors a Hermitian band matrix A as U S U* ,
4343
*> where * means conjugate transpose, S is symmetric tridiagonal, and U is
4444
*> unitary. CHETRD_HB2ST can use either just the lower or just
45-
*> the upper triangle of A; CCHKHBSTG checks both cases.
45+
*> the upper triangle of A; CCHKHB2STG checks both cases.
4646
*>
4747
*> DSTEQR factors S as Z D1 Z'.
4848
*> D1 is the matrix of eigenvalues computed when Z is not computed
@@ -52,7 +52,7 @@
5252
*> D3 is the matrix of eigenvalues computed when Z is not computed
5353
*> and from the S resulting of DSYTRD_SB2ST "L".
5454
*>
55-
*> When CCHKHBSTG is called, a number of matrix "sizes" ("n's"), a number
55+
*> When CCHKHB2STG is called, a number of matrix "sizes" ("n's"), a number
5656
*> of bandwidths ("k's"), and a number of matrix "types" are
5757
*> specified. For each size ("n"), each bandwidth ("k") less than or
5858
*> equal to "n", and each type of matrix, one matrix will be generated
@@ -126,7 +126,7 @@
126126
*> \verbatim
127127
*> NSIZES is INTEGER
128128
*> The number of sizes of matrices to use. If it is zero,
129-
*> CCHKHBSTG does nothing. It must be at least zero.
129+
*> CCHKHB2STG does nothing. It must be at least zero.
130130
*> \endverbatim
131131
*>
132132
*> \param[in] NN
@@ -141,7 +141,7 @@
141141
*> \verbatim
142142
*> NWDTHS is INTEGER
143143
*> The number of bandwidths to use. If it is zero,
144-
*> CCHKHBSTG does nothing. It must be at least zero.
144+
*> CCHKHB2STG does nothing. It must be at least zero.
145145
*> \endverbatim
146146
*>
147147
*> \param[in] KK
@@ -154,7 +154,7 @@
154154
*> \param[in] NTYPES
155155
*> \verbatim
156156
*> NTYPES is INTEGER
157-
*> The number of elements in DOTYPE. If it is zero, CCHKHBSTG
157+
*> The number of elements in DOTYPE. If it is zero, CCHKHB2STG
158158
*> does nothing. It must be at least zero. If it is MAXTYP+1
159159
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
160160
*> defined, which is to use whatever matrix is in A. This
@@ -184,7 +184,7 @@
184184
*> congruential sequence limited to small integers, and so
185185
*> should produce machine independent random numbers. The
186186
*> values of ISEED are changed on exit, and can be used in the
187-
*> next call to CCHKHBSTG to continue the same random number
187+
*> next call to CCHKHB2STG to continue the same random number
188188
*> sequence.
189189
*> \endverbatim
190190
*>
@@ -432,7 +432,7 @@ SUBROUTINE CCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
432432
END IF
433433
*
434434
IF( INFO.NE.0 ) THEN
435-
CALL XERBLA( 'CCHKHBSTG', -INFO )
435+
CALL XERBLA( 'CCHKHB2STG', -INFO )
436436
RETURN
437437
END IF
438438
*
@@ -837,7 +837,7 @@ SUBROUTINE CCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
837837
CALL SLASUM( 'CHB', NOUNIT, NERRS, NTESTT )
838838
RETURN
839839
*
840-
9999 FORMAT( ' CCHKHBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
840+
9999 FORMAT( ' CCHKHB2STG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
841841
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
842842
9998 FORMAT( / 1X, A3,
843843
$ ' -- Complex Hermitian Banded Tridiagonal Reduction Routines'

TESTING/EIG/dchksb2stg.f

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
*> \brief \b DCHKSBSTG
1+
*> \brief \b DCHKSB2STG
22
*
33
* =========== DOCUMENTATION ===========
44
*
@@ -30,18 +30,18 @@
3030
*>
3131
*> \verbatim
3232
*>
33-
*> DCHKSBSTG tests the reduction of a symmetric band matrix to tridiagonal
33+
*> DCHKSB2STG tests the reduction of a symmetric band matrix to tridiagonal
3434
*> form, used with the symmetric eigenvalue problem.
3535
*>
3636
*> DSBTRD factors a symmetric band matrix A as U S U' , where ' means
3737
*> transpose, S is symmetric tridiagonal, and U is orthogonal.
3838
*> DSBTRD can use either just the lower or just the upper triangle
39-
*> of A; DCHKSBSTG checks both cases.
39+
*> of A; DCHKSB2STG checks both cases.
4040
*>
4141
*> DSYTRD_SB2ST factors a symmetric band matrix A as U S U' ,
4242
*> where ' means transpose, S is symmetric tridiagonal, and U is
4343
*> orthogonal. DSYTRD_SB2ST can use either just the lower or just
44-
*> the upper triangle of A; DCHKSBSTG checks both cases.
44+
*> the upper triangle of A; DCHKSB2STG checks both cases.
4545
*>
4646
*> DSTEQR factors S as Z D1 Z'.
4747
*> D1 is the matrix of eigenvalues computed when Z is not computed
@@ -51,7 +51,7 @@
5151
*> D3 is the matrix of eigenvalues computed when Z is not computed
5252
*> and from the S resulting of DSYTRD_SB2ST "L".
5353
*>
54-
*> When DCHKSBSTG is called, a number of matrix "sizes" ("n's"), a number
54+
*> When DCHKSB2STG is called, a number of matrix "sizes" ("n's"), a number
5555
*> of bandwidths ("k's"), and a number of matrix "types" are
5656
*> specified. For each size ("n"), each bandwidth ("k") less than or
5757
*> equal to "n", and each type of matrix, one matrix will be generated
@@ -125,7 +125,7 @@
125125
*> \verbatim
126126
*> NSIZES is INTEGER
127127
*> The number of sizes of matrices to use. If it is zero,
128-
*> DCHKSBSTG does nothing. It must be at least zero.
128+
*> DCHKSB2STG does nothing. It must be at least zero.
129129
*> \endverbatim
130130
*>
131131
*> \param[in] NN
@@ -140,7 +140,7 @@
140140
*> \verbatim
141141
*> NWDTHS is INTEGER
142142
*> The number of bandwidths to use. If it is zero,
143-
*> DCHKSBSTG does nothing. It must be at least zero.
143+
*> DCHKSB2STG does nothing. It must be at least zero.
144144
*> \endverbatim
145145
*>
146146
*> \param[in] KK
@@ -153,7 +153,7 @@
153153
*> \param[in] NTYPES
154154
*> \verbatim
155155
*> NTYPES is INTEGER
156-
*> The number of elements in DOTYPE. If it is zero, DCHKSBSTG
156+
*> The number of elements in DOTYPE. If it is zero, DCHKSB2STG
157157
*> does nothing. It must be at least zero. If it is MAXTYP+1
158158
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
159159
*> defined, which is to use whatever matrix is in A. This
@@ -183,7 +183,7 @@
183183
*> congruential sequence limited to small integers, and so
184184
*> should produce machine independent random numbers. The
185185
*> values of ISEED are changed on exit, and can be used in the
186-
*> next call to DCHKSBSTG to continue the same random number
186+
*> next call to DCHKSB2STG to continue the same random number
187187
*> sequence.
188188
*> \endverbatim
189189
*>
@@ -422,7 +422,7 @@ SUBROUTINE DCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
422422
END IF
423423
*
424424
IF( INFO.NE.0 ) THEN
425-
CALL XERBLA( 'DCHKSBSTG', -INFO )
425+
CALL XERBLA( 'DCHKSB2STG', -INFO )
426426
RETURN
427427
END IF
428428
*
@@ -827,12 +827,12 @@ SUBROUTINE DCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
827827
CALL DLASUM( 'DSB', NOUNIT, NERRS, NTESTT )
828828
RETURN
829829
*
830-
9999 FORMAT( ' DCHKSBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
830+
9999 FORMAT( ' DCHKSB2STG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
831831
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
832832
*
833833
9998 FORMAT( / 1X, A3,
834834
$ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
835-
9997 FORMAT( ' Matrix types (see DCHKSBSTG for details): ' )
835+
9997 FORMAT( ' Matrix types (see DCHKSB2STG for details): ' )
836836
*
837837
9996 FORMAT( / ' Special Matrices:',
838838
$ / ' 1=Zero matrix. ',

TESTING/EIG/schksb2stg.f

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
*> \brief \b SCHKSBSTG
1+
*> \brief \b SCHKSB2STG
22
*
33
* =========== DOCUMENTATION ===========
44
*
@@ -30,18 +30,18 @@
3030
*>
3131
*> \verbatim
3232
*>
33-
*> SCHKSBSTG tests the reduction of a symmetric band matrix to tridiagonal
33+
*> SCHKSB2STG tests the reduction of a symmetric band matrix to tridiagonal
3434
*> form, used with the symmetric eigenvalue problem.
3535
*>
3636
*> SSBTRD factors a symmetric band matrix A as U S U' , where ' means
3737
*> transpose, S is symmetric tridiagonal, and U is orthogonal.
3838
*> SSBTRD can use either just the lower or just the upper triangle
39-
*> of A; SCHKSBSTG checks both cases.
39+
*> of A; SCHKSB2STG checks both cases.
4040
*>
4141
*> SSYTRD_SB2ST factors a symmetric band matrix A as U S U' ,
4242
*> where ' means transpose, S is symmetric tridiagonal, and U is
4343
*> orthogonal. SSYTRD_SB2ST can use either just the lower or just
44-
*> the upper triangle of A; SCHKSBSTG checks both cases.
44+
*> the upper triangle of A; SCHKSB2STG checks both cases.
4545
*>
4646
*> SSTEQR factors S as Z D1 Z'.
4747
*> D1 is the matrix of eigenvalues computed when Z is not computed
@@ -51,7 +51,7 @@
5151
*> D3 is the matrix of eigenvalues computed when Z is not computed
5252
*> and from the S resulting of SSYTRD_SB2ST "L".
5353
*>
54-
*> When SCHKSBSTG is called, a number of matrix "sizes" ("n's"), a number
54+
*> When SCHKSB2STG is called, a number of matrix "sizes" ("n's"), a number
5555
*> of bandwidths ("k's"), and a number of matrix "types" are
5656
*> specified. For each size ("n"), each bandwidth ("k") less than or
5757
*> equal to "n", and each type of matrix, one matrix will be generated
@@ -125,7 +125,7 @@
125125
*> \verbatim
126126
*> NSIZES is INTEGER
127127
*> The number of sizes of matrices to use. If it is zero,
128-
*> SCHKSBSTG does nothing. It must be at least zero.
128+
*> SCHKSB2STG does nothing. It must be at least zero.
129129
*> \endverbatim
130130
*>
131131
*> \param[in] NN
@@ -140,7 +140,7 @@
140140
*> \verbatim
141141
*> NWDTHS is INTEGER
142142
*> The number of bandwidths to use. If it is zero,
143-
*> SCHKSBSTG does nothing. It must be at least zero.
143+
*> SCHKSB2STG does nothing. It must be at least zero.
144144
*> \endverbatim
145145
*>
146146
*> \param[in] KK
@@ -153,7 +153,7 @@
153153
*> \param[in] NTYPES
154154
*> \verbatim
155155
*> NTYPES is INTEGER
156-
*> The number of elements in DOTYPE. If it is zero, SCHKSBSTG
156+
*> The number of elements in DOTYPE. If it is zero, SCHKSB2STG
157157
*> does nothing. It must be at least zero. If it is MAXTYP+1
158158
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
159159
*> defined, which is to use whatever matrix is in A. This
@@ -183,7 +183,7 @@
183183
*> congruential sequence limited to small integers, and so
184184
*> should produce machine independent random numbers. The
185185
*> values of ISEED are changed on exit, and can be used in the
186-
*> next call to SCHKSBSTG to continue the same random number
186+
*> next call to SCHKSB2STG to continue the same random number
187187
*> sequence.
188188
*> \endverbatim
189189
*>
@@ -422,7 +422,7 @@ SUBROUTINE SCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
422422
END IF
423423
*
424424
IF( INFO.NE.0 ) THEN
425-
CALL XERBLA( 'SCHKSBSTG', -INFO )
425+
CALL XERBLA( 'SCHKSB2STG', -INFO )
426426
RETURN
427427
END IF
428428
*
@@ -827,12 +827,12 @@ SUBROUTINE SCHKSB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
827827
CALL SLASUM( 'SSB', NOUNIT, NERRS, NTESTT )
828828
RETURN
829829
*
830-
9999 FORMAT( ' SCHKSBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
830+
9999 FORMAT( ' SCHKSB2STG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
831831
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
832832
*
833833
9998 FORMAT( / 1X, A3,
834834
$ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
835-
9997 FORMAT( ' Matrix types (see SCHKSBSTG for details): ' )
835+
9997 FORMAT( ' Matrix types (see SCHKSB2STG for details): ' )
836836
*
837837
9996 FORMAT( / ' Special Matrices:',
838838
$ / ' 1=Zero matrix. ',

TESTING/EIG/zchkhb2stg.f

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
*> \brief \b ZCHKHBSTG
1+
*> \brief \b ZCHKHB2STG
22
*
33
* =========== DOCUMENTATION ===========
44
*
@@ -8,7 +8,7 @@
88
* Definition:
99
* ===========
1010
*
11-
* SUBROUTINE ZCHKHBSTG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
11+
* SUBROUTINE ZCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
1212
* ISEED, THRESH, NOUNIT, A, LDA, SD, SE, D1,
1313
* D2, D3, U, LDU, WORK, LWORK, RWORK RESULT,
1414
* INFO )
@@ -31,18 +31,18 @@
3131
*>
3232
*> \verbatim
3333
*>
34-
*> ZCHKHBSTG tests the reduction of a Hermitian band matrix to tridiagonal
34+
*> ZCHKHB2STG tests the reduction of a Hermitian band matrix to tridiagonal
3535
*> from, used with the Hermitian eigenvalue problem.
3636
*>
3737
*> ZHBTRD factors a Hermitian band matrix A as U S U* , where * means
3838
*> conjugate transpose, S is symmetric tridiagonal, and U is unitary.
3939
*> ZHBTRD can use either just the lower or just the upper triangle
40-
*> of A; ZCHKHBSTG checks both cases.
40+
*> of A; ZCHKHB2STG checks both cases.
4141
*>
4242
*> ZHETRD_HB2ST factors a Hermitian band matrix A as U S U* ,
4343
*> where * means conjugate transpose, S is symmetric tridiagonal, and U is
4444
*> unitary. ZHETRD_HB2ST can use either just the lower or just
45-
*> the upper triangle of A; ZCHKHBSTG checks both cases.
45+
*> the upper triangle of A; ZCHKHB2STG checks both cases.
4646
*>
4747
*> DSTEQR factors S as Z D1 Z'.
4848
*> D1 is the matrix of eigenvalues computed when Z is not computed
@@ -52,7 +52,7 @@
5252
*> D3 is the matrix of eigenvalues computed when Z is not computed
5353
*> and from the S resulting of DSYTRD_SB2ST "L".
5454
*>
55-
*> When ZCHKHBSTG is called, a number of matrix "sizes" ("n's"), a number
55+
*> When ZCHKHB2STG is called, a number of matrix "sizes" ("n's"), a number
5656
*> of bandwidths ("k's"), and a number of matrix "types" are
5757
*> specified. For each size ("n"), each bandwidth ("k") less than or
5858
*> equal to "n", and each type of matrix, one matrix will be generated
@@ -126,7 +126,7 @@
126126
*> \verbatim
127127
*> NSIZES is INTEGER
128128
*> The number of sizes of matrices to use. If it is zero,
129-
*> ZCHKHBSTG does nothing. It must be at least zero.
129+
*> ZCHKHB2STG does nothing. It must be at least zero.
130130
*> \endverbatim
131131
*>
132132
*> \param[in] NN
@@ -141,7 +141,7 @@
141141
*> \verbatim
142142
*> NWDTHS is INTEGER
143143
*> The number of bandwidths to use. If it is zero,
144-
*> ZCHKHBSTG does nothing. It must be at least zero.
144+
*> ZCHKHB2STG does nothing. It must be at least zero.
145145
*> \endverbatim
146146
*>
147147
*> \param[in] KK
@@ -154,7 +154,7 @@
154154
*> \param[in] NTYPES
155155
*> \verbatim
156156
*> NTYPES is INTEGER
157-
*> The number of elements in DOTYPE. If it is zero, ZCHKHBSTG
157+
*> The number of elements in DOTYPE. If it is zero, ZCHKHB2STG
158158
*> does nothing. It must be at least zero. If it is MAXTYP+1
159159
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
160160
*> defined, which is to use whatever matrix is in A. This
@@ -184,7 +184,7 @@
184184
*> congruential sequence limited to small integers, and so
185185
*> should produce machine independent random numbers. The
186186
*> values of ISEED are changed on exit, and can be used in the
187-
*> next call to ZCHKHBSTG to continue the same random number
187+
*> next call to ZCHKHB2STG to continue the same random number
188188
*> sequence.
189189
*> \endverbatim
190190
*>
@@ -432,7 +432,7 @@ SUBROUTINE ZCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
432432
END IF
433433
*
434434
IF( INFO.NE.0 ) THEN
435-
CALL XERBLA( 'ZCHKHBSTG', -INFO )
435+
CALL XERBLA( 'ZCHKHB2STG', -INFO )
436436
RETURN
437437
END IF
438438
*
@@ -837,7 +837,7 @@ SUBROUTINE ZCHKHB2STG( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE,
837837
CALL DLASUM( 'ZHB', NOUNIT, NERRS, NTESTT )
838838
RETURN
839839
*
840-
9999 FORMAT( ' ZCHKHBSTG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
840+
9999 FORMAT( ' ZCHKHB2STG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
841841
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
842842
9998 FORMAT( / 1X, A3,
843843
$ ' -- Complex Hermitian Banded Tridiagonal Reduction Routines'

0 commit comments

Comments
 (0)