|
| 1 | +import requests |
| 2 | +import time |
| 3 | +import os |
| 4 | +from dataclasses import dataclass |
| 5 | +import sys |
| 6 | + |
| 7 | +import github |
| 8 | +from github import Github |
| 9 | +from github import Auth |
| 10 | + |
| 11 | +GRAFANA_URL = ( |
| 12 | + "https://influx-prod-13-prod-us-east-0.grafana.net/api/v1/push/influx/write" |
| 13 | +) |
| 14 | +GITHUB_PROJECT = "llvm/llvm-project" |
| 15 | +WORKFLOWS_TO_TRACK = ["Check code formatting"] |
| 16 | +SCRAPE_INTERVAL_SECONDS = 5 * 60 |
| 17 | + |
| 18 | + |
| 19 | +@dataclass |
| 20 | +class JobMetrics: |
| 21 | + job_name: str |
| 22 | + queue_time: int |
| 23 | + run_time: int |
| 24 | + status: int |
| 25 | + created_at_ns: int |
| 26 | + workflow_id: int |
| 27 | + |
| 28 | + |
| 29 | +def get_metrics(github_repo: github.Repository, workflows_to_track: dict[str, int]): |
| 30 | + """Gets the metrics for specified Github workflows. |
| 31 | +
|
| 32 | + This function takes in a list of workflows to track, and optionally the |
| 33 | + workflow ID of the last tracked invocation. It grabs the relevant data |
| 34 | + from Github, returning it to the caller. |
| 35 | +
|
| 36 | + Args: |
| 37 | + github_repo: A github repo object to use to query the relevant information. |
| 38 | + workflows_to_track: A dictionary mapping workflow names to the last |
| 39 | + invocation ID where metrics have been collected, or None to collect the |
| 40 | + last five results. |
| 41 | +
|
| 42 | + Returns: |
| 43 | + Returns a list of JobMetrics objects, containing the relevant metrics about |
| 44 | + the workflow. |
| 45 | + """ |
| 46 | + workflow_runs = iter(github_repo.get_workflow_runs()) |
| 47 | + |
| 48 | + workflow_metrics = [] |
| 49 | + |
| 50 | + workflows_to_include = set(workflows_to_track.keys()) |
| 51 | + |
| 52 | + while len(workflows_to_include) > 0: |
| 53 | + workflow_run = next(workflow_runs) |
| 54 | + if workflow_run.status != "completed": |
| 55 | + continue |
| 56 | + |
| 57 | + # This workflow was already sampled for this run, or is not tracked at |
| 58 | + # all. Ignoring. |
| 59 | + if workflow_run.name not in workflows_to_include: |
| 60 | + continue |
| 61 | + |
| 62 | + # There were no new workflow invocations since the previous scrape. |
| 63 | + # The API returns a sorted list with the most recent invocations first, |
| 64 | + # so we can stop looking for this particular workflow. Continue to grab |
| 65 | + # information on the other workflows of interest, if present. |
| 66 | + if workflows_to_track[workflow_run.name] == workflow_run.id: |
| 67 | + workflows_to_include.remove(workflow_run.name) |
| 68 | + continue |
| 69 | + |
| 70 | + workflow_jobs = workflow_run.jobs() |
| 71 | + if workflow_jobs.totalCount == 0: |
| 72 | + continue |
| 73 | + if workflow_jobs.totalCount > 1: |
| 74 | + raise ValueError( |
| 75 | + f"Encountered an unexpected number of jobs: {workflow_jobs.totalCount}" |
| 76 | + ) |
| 77 | + |
| 78 | + created_at = workflow_jobs[0].created_at |
| 79 | + started_at = workflow_jobs[0].started_at |
| 80 | + completed_at = workflow_jobs[0].completed_at |
| 81 | + |
| 82 | + job_result = int(workflow_jobs[0].conclusion == "success") |
| 83 | + |
| 84 | + queue_time = started_at - created_at |
| 85 | + run_time = completed_at - started_at |
| 86 | + |
| 87 | + if run_time.seconds == 0: |
| 88 | + continue |
| 89 | + |
| 90 | + if ( |
| 91 | + workflows_to_track[workflow_run.name] is None |
| 92 | + or workflows_to_track[workflow_run.name] == workflow_run.id |
| 93 | + ): |
| 94 | + workflows_to_include.remove(workflow_run.name) |
| 95 | + if ( |
| 96 | + workflows_to_track[workflow_run.name] is not None |
| 97 | + and len(workflows_to_include) == 0 |
| 98 | + ): |
| 99 | + break |
| 100 | + |
| 101 | + # The timestamp associated with the event is expected by Grafana to be |
| 102 | + # in nanoseconds. |
| 103 | + created_at_ns = int(created_at.timestamp()) * 10**9 |
| 104 | + |
| 105 | + workflow_metrics.append( |
| 106 | + JobMetrics( |
| 107 | + workflow_run.name, |
| 108 | + queue_time.seconds, |
| 109 | + run_time.seconds, |
| 110 | + job_result, |
| 111 | + created_at_ns, |
| 112 | + workflow_run.id, |
| 113 | + ) |
| 114 | + ) |
| 115 | + |
| 116 | + return workflow_metrics |
| 117 | + |
| 118 | + |
| 119 | +def upload_metrics(workflow_metrics, metrics_userid, api_key): |
| 120 | + """Upload metrics to Grafana. |
| 121 | +
|
| 122 | + Takes in a list of workflow metrics and then uploads them to Grafana |
| 123 | + through a REST request. |
| 124 | +
|
| 125 | + Args: |
| 126 | + workflow_metrics: A list of metrics to upload to Grafana. |
| 127 | + metrics_userid: The userid to use for the upload. |
| 128 | + api_key: The API key to use for the upload. |
| 129 | + """ |
| 130 | + metrics_batch = [] |
| 131 | + for workflow_metric in workflow_metrics: |
| 132 | + workflow_formatted_name = workflow_metric.job_name.lower().replace(" ", "_") |
| 133 | + metrics_batch.append( |
| 134 | + f"{workflow_formatted_name} queue_time={workflow_metric.queue_time},run_time={workflow_metric.run_time},status={workflow_metric.status} {workflow_metric.created_at_ns}" |
| 135 | + ) |
| 136 | + |
| 137 | + request_data = "\n".join(metrics_batch) |
| 138 | + response = requests.post( |
| 139 | + GRAFANA_URL, |
| 140 | + headers={"Content-Type": "text/plain"}, |
| 141 | + data=request_data, |
| 142 | + auth=(metrics_userid, api_key), |
| 143 | + ) |
| 144 | + |
| 145 | + if response.status_code < 200 or response.status_code >= 300: |
| 146 | + print( |
| 147 | + f"Failed to submit data to Grafana: {response.status_code}", file=sys.stderr |
| 148 | + ) |
| 149 | + |
| 150 | + |
| 151 | +def main(): |
| 152 | + # Authenticate with Github |
| 153 | + auth = Auth.Token(os.environ["GITHUB_TOKEN"]) |
| 154 | + github_object = Github(auth=auth) |
| 155 | + github_repo = github_object.get_repo("llvm/llvm-project") |
| 156 | + |
| 157 | + grafana_api_key = os.environ["GRAFANA_API_KEY"] |
| 158 | + grafana_metrics_userid = os.environ["GRAFANA_METRICS_USERID"] |
| 159 | + |
| 160 | + workflows_to_track = {} |
| 161 | + for workflow_to_track in WORKFLOWS_TO_TRACK: |
| 162 | + workflows_to_track[workflow_to_track] = None |
| 163 | + |
| 164 | + # Enter the main loop. Every five minutes we wake up and dump metrics for |
| 165 | + # the relevant jobs. |
| 166 | + while True: |
| 167 | + current_metrics = get_metrics(github_repo, workflows_to_track) |
| 168 | + if len(current_metrics) == 0: |
| 169 | + print("No metrics found to upload.", file=sys.stderr) |
| 170 | + continue |
| 171 | + |
| 172 | + upload_metrics(current_metrics, grafana_metrics_userid, grafana_api_key) |
| 173 | + print(f"Uploaded {len(current_metrics)} metrics", file=sys.stderr) |
| 174 | + |
| 175 | + for workflow_metric in reversed(current_metrics): |
| 176 | + workflows_to_track[workflow_metric.job_name] = workflow_metric.workflow_id |
| 177 | + |
| 178 | + time.sleep(SCRAPE_INTERVAL_SECONDS) |
| 179 | + |
| 180 | + |
| 181 | +if __name__ == "__main__": |
| 182 | + main() |
0 commit comments