|
| 1 | +.. meta:: |
| 2 | + :description: This page describes FP8 numbers present in HIP. |
| 3 | + :keywords: AMD, ROCm, HIP, fp8, fnuz, ocp |
| 4 | + |
| 5 | +******************************************************************************* |
| 6 | +FP8 Numbers |
| 7 | +******************************************************************************* |
| 8 | + |
| 9 | +`FP8 numbers <https://arxiv.org/pdf/2209.05433>`_ were introduced to accelerate deep learning inferencing. They provide higher throughput of matrix operations because the smaller size allows more of them in the available fixed memory. |
| 10 | + |
| 11 | +HIP has two FP8 number representations called *FP8-OCP* and *FP8-FNUZ*. |
| 12 | + |
| 13 | +Open Compute Project(OCP) number definition can be found `here <https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1>`_. |
| 14 | + |
| 15 | +Definition of FNUZ: fnuz suffix means only finite and NaN values are supported. Unlike other types, Inf are not supported. |
| 16 | +NaN is when sign bit is set and all other exponent and mantissa bits are 0. All other values are finite. |
| 17 | +This provides one extra value of exponent and adds to the range of supported FP8 numbers. |
| 18 | + |
| 19 | +FP8 Definition |
| 20 | +============== |
| 21 | + |
| 22 | +FP8 numbers are composed of a sign, an exponent and a mantissa. Their sizes are dependent on the format. |
| 23 | +There are two formats of FP8 numbers, E4M3 and E5M2. |
| 24 | + |
| 25 | +- E4M3: 1 bit sign, 4 bit exponent, 3 bit mantissa |
| 26 | +- E5M2: 1 bit sign, 5 bit exponent, 2 bit mantissa |
| 27 | + |
| 28 | +HIP Header |
| 29 | +========== |
| 30 | + |
| 31 | +HIP header defined the FP8 ocp/fnuz numbers `here <https://github.com/ROCm/clr/blob/develop/hipamd/include/hip/amd_detail/amd_hip_fp8.h>`_. |
| 32 | + |
| 33 | +Supported Devices |
| 34 | +================= |
| 35 | + |
| 36 | +.. list-table:: Supported devices for fp8 numbers |
| 37 | + :header-rows: 1 |
| 38 | + |
| 39 | + * - Device Type |
| 40 | + - FNUZ FP8 |
| 41 | + - OCP FP8 |
| 42 | + * - Host |
| 43 | + - Yes |
| 44 | + - Yes |
| 45 | + * - gfx940/gfx941/gfx942 |
| 46 | + - Yes |
| 47 | + - No |
| 48 | + |
| 49 | +Usage |
| 50 | +===== |
| 51 | + |
| 52 | +To use the FP8 numbers inside HIP programs. |
| 53 | + |
| 54 | +.. code-block:: c |
| 55 | +
|
| 56 | + #include <hip/hip_fp8.h> |
| 57 | +
|
| 58 | +FP8 numbers can be used on CPU side: |
| 59 | + |
| 60 | +.. code-block:: c |
| 61 | +
|
| 62 | + __hip_fp8_storage_t convert_float_to_fp8( |
| 63 | + float in, /* Input val */ |
| 64 | + __hip_fp8_interpretation_t interpret, /* interpretation of number E4M3/E5M2 */ |
| 65 | + __hip_saturation_t sat /* Saturation behavior */ |
| 66 | + ) { |
| 67 | + return __hip_cvt_float_to_fp8(in, sat, interpret); |
| 68 | + } |
| 69 | +
|
| 70 | +The same can be done in kernels as well. |
| 71 | + |
| 72 | +.. code-block:: c |
| 73 | +
|
| 74 | + __device__ __hip_fp8_storage_t d_convert_float_to_fp8( |
| 75 | + float in, |
| 76 | + __hip_fp8_interpretation_t interpret, |
| 77 | + __hip_saturation_t sat) { |
| 78 | + return __hip_cvt_float_to_fp8(in, sat, interpret); |
| 79 | + } |
| 80 | +
|
| 81 | +An important thing to note here is if you use this on gfx94x GPU, it will be fnuz number but on any other GPU it will be an OCP number. |
| 82 | + |
| 83 | +The following code example does roundtrip FP8 conversions on both the CPU and GPU and compares the results. |
| 84 | + |
| 85 | +.. code-block:: c |
| 86 | +
|
| 87 | + #include <hip/hip_fp8.h> |
| 88 | + #include <hip/hip_runtime.h> |
| 89 | + #include <iostream> |
| 90 | + #include <vector> |
| 91 | +
|
| 92 | + #define hip_check(hip_call) \ |
| 93 | + { \ |
| 94 | + auto hip_res = hip_call; \ |
| 95 | + if (hip_res != hipSuccess) { \ |
| 96 | + std::cerr << "Failed in hip call: " << #hip_call \ |
| 97 | + << " with error: " << hipGetErrorName(hip_res) << std::endl; \ |
| 98 | + std::abort(); \ |
| 99 | + } \ |
| 100 | + } |
| 101 | +
|
| 102 | + __device__ __hip_fp8_storage_t d_convert_float_to_fp8( |
| 103 | + float in, __hip_fp8_interpretation_t interpret, __hip_saturation_t sat) { |
| 104 | + return __hip_cvt_float_to_fp8(in, sat, interpret); |
| 105 | + } |
| 106 | +
|
| 107 | + __device__ float d_convert_fp8_to_float(float in, |
| 108 | + __hip_fp8_interpretation_t interpret) { |
| 109 | + __half hf = __hip_cvt_fp8_to_halfraw(in, interpret); |
| 110 | + return hf; |
| 111 | + } |
| 112 | +
|
| 113 | + __global__ void float_to_fp8_to_float(float *in, |
| 114 | + __hip_fp8_interpretation_t interpret, |
| 115 | + __hip_saturation_t sat, float *out, |
| 116 | + size_t size) { |
| 117 | + int i = threadIdx.x; |
| 118 | + if (i < size) { |
| 119 | + auto fp8 = d_convert_float_to_fp8(in[i], interpret, sat); |
| 120 | + out[i] = d_convert_fp8_to_float(fp8, interpret); |
| 121 | + } |
| 122 | + } |
| 123 | +
|
| 124 | + __hip_fp8_storage_t |
| 125 | + convert_float_to_fp8(float in, /* Input val */ |
| 126 | + __hip_fp8_interpretation_t |
| 127 | + interpret, /* interpretation of number E4M3/E5M2 */ |
| 128 | + __hip_saturation_t sat /* Saturation behavior */ |
| 129 | + ) { |
| 130 | + return __hip_cvt_float_to_fp8(in, sat, interpret); |
| 131 | + } |
| 132 | +
|
| 133 | + float convert_fp8_to_float( |
| 134 | + __hip_fp8_storage_t in, /* Input val */ |
| 135 | + __hip_fp8_interpretation_t |
| 136 | + interpret /* interpretation of number E4M3/E5M2 */ |
| 137 | + ) { |
| 138 | + __half hf = __hip_cvt_fp8_to_halfraw(in, interpret); |
| 139 | + return hf; |
| 140 | + } |
| 141 | +
|
| 142 | + int main() { |
| 143 | + constexpr size_t size = 32; |
| 144 | + hipDeviceProp_t prop; |
| 145 | + hip_check(hipGetDeviceProperties(&prop, 0)); |
| 146 | + bool is_supported = (std::string(prop.gcnArchName).find("gfx94") != std::string::npos) || // gfx94x |
| 147 | + (std::string(prop.gcnArchName).find("gfx120") != std::string::npos); // gfx120x |
| 148 | + if(!is_supported) { |
| 149 | + std::cerr << "Need a gfx94x or gfx120x, but found: " << prop.gcnArchName << std::endl; |
| 150 | + std::cerr << "No device conversions are supported, only host conversions are supported." << std::endl; |
| 151 | + return -1; |
| 152 | + } |
| 153 | +
|
| 154 | + const __hip_fp8_interpretation_t interpret = (std::string(prop.gcnArchName).find("gfx94") != std::string::npos) |
| 155 | + ? __HIP_E4M3_FNUZ // gfx94x |
| 156 | + : __HIP_E4M3; // gfx120x |
| 157 | + constexpr __hip_saturation_t sat = __HIP_SATFINITE; |
| 158 | +
|
| 159 | + std::vector<float> in; |
| 160 | + in.reserve(size); |
| 161 | + for (size_t i = 0; i < size; i++) { |
| 162 | + in.push_back(i + 1.1f); |
| 163 | + } |
| 164 | +
|
| 165 | + std::cout << "Converting float to fp8 and back..." << std::endl; |
| 166 | + // CPU convert |
| 167 | + std::vector<float> cpu_out; |
| 168 | + cpu_out.reserve(size); |
| 169 | + for (const auto &fval : in) { |
| 170 | + auto fp8 = convert_float_to_fp8(fval, interpret, sat); |
| 171 | + cpu_out.push_back(convert_fp8_to_float(fp8, interpret)); |
| 172 | + } |
| 173 | +
|
| 174 | + // GPU convert |
| 175 | + float *d_in, *d_out; |
| 176 | + hip_check(hipMalloc(&d_in, sizeof(float) * size)); |
| 177 | + hip_check(hipMalloc(&d_out, sizeof(float) * size)); |
| 178 | +
|
| 179 | + hip_check(hipMemcpy(d_in, in.data(), sizeof(float) * in.size(), |
| 180 | + hipMemcpyHostToDevice)); |
| 181 | +
|
| 182 | + float_to_fp8_to_float<<<1, size>>>(d_in, interpret, sat, d_out, size); |
| 183 | +
|
| 184 | + std::vector<float> gpu_out(size, 0.0f); |
| 185 | + hip_check(hipMemcpy(gpu_out.data(), d_out, sizeof(float) * gpu_out.size(), |
| 186 | + hipMemcpyDeviceToHost)); |
| 187 | +
|
| 188 | + hip_check(hipFree(d_in)); |
| 189 | + hip_check(hipFree(d_out)); |
| 190 | +
|
| 191 | + // Validation |
| 192 | + for (size_t i = 0; i < size; i++) { |
| 193 | + if (cpu_out[i] != gpu_out[i]) { |
| 194 | + std::cerr << "cpu round trip result: " << cpu_out[i] |
| 195 | + << " - gpu round trip result: " << gpu_out[i] << std::endl; |
| 196 | + std::abort(); |
| 197 | + } |
| 198 | + } |
| 199 | + std::cout << "...CPU and GPU round trip convert matches." << std::endl; |
| 200 | + } |
| 201 | +
|
| 202 | +There are C++ style classes available as well. |
| 203 | + |
| 204 | +.. code-block:: c |
| 205 | +
|
| 206 | + __hip_fp8_e4m3_fnuz fp8_val(1.1f); // gfx94x |
| 207 | + __hip_fp8_e4m3 fp8_val(1.1f); // gfx120x |
| 208 | +
|
| 209 | +Each type of FP8 number has its own class: |
| 210 | + |
| 211 | +- __hip_fp8_e4m3 |
| 212 | +- __hip_fp8_e5m2 |
| 213 | +- __hip_fp8_e4m3_fnuz |
| 214 | +- __hip_fp8_e5m2_fnuz |
| 215 | + |
| 216 | +There is support of vector of FP8 types. |
| 217 | + |
| 218 | +- __hip_fp8x2_e4m3: holds 2 values of OCP FP8 e4m3 numbers |
| 219 | +- __hip_fp8x4_e4m3: holds 4 values of OCP FP8 e4m3 numbers |
| 220 | +- __hip_fp8x2_e5m2: holds 2 values of OCP FP8 e5m2 numbers |
| 221 | +- __hip_fp8x4_e5m2: holds 4 values of OCP FP8 e5m2 numbers |
| 222 | +- __hip_fp8x2_e4m3_fnuz: holds 2 values of FP8 fnuz e4m3 numbers |
| 223 | +- __hip_fp8x4_e4m3_fnuz: holds 4 values of FP8 fnuz e4m3 numbers |
| 224 | +- __hip_fp8x2_e5m2_fnuz: holds 2 values of FP8 fnuz e5m2 numbers |
| 225 | +- __hip_fp8x4_e5m2_fnuz: holds 4 values of FP8 fnuz e5m2 numbers |
| 226 | + |
| 227 | +FNUZ extensions will be available on gfx94x only. |
0 commit comments