-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathgail.py
292 lines (245 loc) · 13.8 KB
/
gail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python
# Created at 2020/5/9
import math
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from Algorithms.pytorch.GAIL.dataset.expert_dataset import ExpertDataset
from Algorithms.pytorch.Models.ConfigPolicy import Policy
from Algorithms.pytorch.Models.Discriminator import Discriminator
from Algorithms.pytorch.Models.Value import Value
from Algorithms.pytorch.PPO.ppo_step import ppo_step
from Common.GAE import estimate_advantages
from Common.MemoryCollector import MemoryCollector
from Utils.env_util import get_env_info
from Utils.file_util import check_path
from Utils.torch_util import FLOAT, to_device, device, resolve_activate_function
class GAIL:
def __init__(self,
render=False,
num_process=4,
config=None,
expert_data_path=None,
env_id=None):
self.render = render
self.env_id = env_id
self.num_process = num_process
self.expert_data_path = expert_data_path
self.config = config
self._load_expert_trajectory()
self._init_model()
def _load_expert_trajectory(self):
self.expert_dataset = ExpertDataset(expert_data_path=self.expert_data_path,
train_fraction=self.config["expert_data"]["train_fraction"],
traj_limitation=self.config["expert_data"]["traj_limitation"],
shuffle=self.config["expert_data"]["shuffle"],
batch_size=self.config["expert_data"]["batch_size"])
def _init_model(self):
# seeding
seed = self.config["train"]["general"]["seed"]
torch.manual_seed(seed)
np.random.seed(seed)
self.env, env_continuous, num_states, num_actions = get_env_info(
self.env_id)
# check env
assert num_states == self.expert_dataset.num_states and num_actions == self.expert_dataset.num_actions, \
"Expected corresponding expert dataset and env"
dim_dict = {
"dim_state": num_states,
"dim_action": num_actions
}
self.config["value"].update(dim_dict)
self.config["policy"].update(dim_dict)
self.config["discriminator"].update(dim_dict)
self.value = Value(dim_state=self.config["value"]["dim_state"],
dim_hidden=self.config["value"]["dim_hidden"],
activation=resolve_activate_function(
self.config["value"]["activation"])
)
self.policy = Policy(config=self.config["policy"])
self.discriminator = Discriminator(dim_state=self.config["discriminator"]["dim_state"],
dim_action=self.config["discriminator"]["dim_action"],
dim_hidden=self.config["discriminator"]["dim_hidden"],
activation=resolve_activate_function(
self.config["discriminator"]["activation"])
)
self.discriminator_func = nn.BCELoss()
self.running_state = None
self.collector = MemoryCollector(self.env, self.policy, render=self.render,
running_state=self.running_state,
num_process=self.num_process)
print("Model Structure")
print(self.policy)
print(self.value)
print(self.discriminator)
print()
self.optimizer_policy = optim.Adam(
self.policy.parameters(), lr=self.config["policy"]["learning_rate"])
self.optimizer_value = optim.Adam(
self.value.parameters(), lr=self.config["value"]["learning_rate"])
self.optimizer_discriminator = optim.Adam(self.discriminator.parameters(),
lr=self.config["discriminator"]["learning_rate"])
to_device(self.value, self.policy,
self.discriminator, self.discriminator_func)
def choose_action(self, state):
"""select action"""
state = FLOAT(state).unsqueeze(0).to(device)
with torch.no_grad():
action, log_prob = self.policy.get_action_log_prob(state)
return action, log_prob
def learn(self, writer, i_iter):
memory, log = self.collector.collect_samples(
self.config["train"]["generator"]["sample_batch_size"])
self.policy.train()
self.value.train()
self.discriminator.train()
print(f"Iter: {i_iter}, num steps: {log['num_steps']}, total reward: {log['total_reward']: .4f}, "
f"min reward: {log['min_episode_reward']: .4f}, max reward: {log['max_episode_reward']: .4f}, "
f"average reward: {log['avg_reward']: .4f}, sample time: {log['sample_time']: .4f}")
# record reward information
writer.add_scalar("gail/average reward", log['avg_reward'], i_iter)
writer.add_scalar("gail/num steps", log['num_steps'], i_iter)
# collect generated batch
# gen_batch = self.collect_samples(self.config["ppo"]["sample_batch_size"])
gen_batch = memory.sample()
gen_batch_state = FLOAT(gen_batch.state).to(
device) # [batch size, state size]
gen_batch_action = FLOAT(gen_batch.action).to(
device) # [batch size, action size]
gen_batch_old_log_prob = FLOAT(
gen_batch.log_prob).to(device) # [batch size, 1]
gen_batch_mask = FLOAT(gen_batch.mask).to(device) # [batch, 1]
####################################################
# update discriminator
####################################################
d_optim_i_iters = self.config["train"]["discriminator"]["optim_step"]
if i_iter % d_optim_i_iters == 0:
for step, (expert_batch_state, expert_batch_action) in enumerate(self.expert_dataset.train_loader):
if step >= d_optim_i_iters:
break
# calculate probs and logits
gen_prob, gen_logits = self.discriminator(
gen_batch_state, gen_batch_action)
expert_prob, expert_logits = self.discriminator(expert_batch_state.to(device),
expert_batch_action.to(device))
# calculate accuracy
gen_acc = torch.mean((gen_prob < 0.5).float())
expert_acc = torch.mean((expert_prob > 0.5).float())
# calculate regression loss
expert_labels = torch.ones_like(expert_prob)
gen_labels = torch.zeros_like(gen_prob)
e_loss = self.discriminator_func(
expert_prob, target=expert_labels)
g_loss = self.discriminator_func(gen_prob, target=gen_labels)
d_loss = e_loss + g_loss
# calculate entropy loss
logits = torch.cat([gen_logits, expert_logits], 0)
entropy = ((1. - torch.sigmoid(logits)) * logits -
torch.nn.functional.logsigmoid(logits)).mean()
entropy_loss = - \
self.config["train"]["discriminator"]["ent_coeff"] * entropy
total_loss = d_loss + entropy_loss
self.optimizer_discriminator.zero_grad()
total_loss.backward()
self.optimizer_discriminator.step()
writer.add_scalar('discriminator/d_loss', d_loss.item(), i_iter)
writer.add_scalar("discriminator/e_loss", e_loss.item(), i_iter)
writer.add_scalar("discriminator/g_loss", g_loss.item(), i_iter)
writer.add_scalar("discriminator/ent", entropy.item(), i_iter)
writer.add_scalar('discriminator/expert_acc', gen_acc.item(), i_iter)
writer.add_scalar('discriminator/gen_acc', expert_acc.item(), i_iter)
####################################################
# update policy by ppo [mini_batch]
####################################################
with torch.no_grad():
gen_batch_value = self.value(gen_batch_state)
d_out, _ = self.discriminator(gen_batch_state, gen_batch_action)
gen_batch_reward = -torch.log(1 - d_out + 1e-6)
gen_batch_advantage, gen_batch_return = estimate_advantages(gen_batch_reward, gen_batch_mask,
gen_batch_value,
self.config["train"]["generator"]["gamma"],
self.config["train"]["generator"]["tau"])
ppo_optim_i_iters = self.config["train"]["generator"]["optim_step"]
ppo_mini_batch_size = self.config["train"]["generator"]["mini_batch_size"]
for _ in range(ppo_optim_i_iters):
if ppo_mini_batch_size > 0:
gen_batch_size = gen_batch_state.shape[0]
optim_iter_num = int(
math.ceil(gen_batch_size / ppo_mini_batch_size))
perm = torch.randperm(gen_batch_size)
for i in range(optim_iter_num):
ind = perm[slice(i * ppo_mini_batch_size,
min((i + 1) * ppo_mini_batch_size, gen_batch_size))]
mini_batch_state, mini_batch_action, mini_batch_advantage, mini_batch_return, \
mini_batch_old_log_prob = gen_batch_state[ind], gen_batch_action[ind], \
gen_batch_advantage[ind], gen_batch_return[ind], gen_batch_old_log_prob[
ind]
v_loss, p_loss, ent_loss = ppo_step(policy_net=self.policy,
value_net=self.value,
optimizer_policy=self.optimizer_policy,
optimizer_value=self.optimizer_value,
optim_value_iternum=self.config["value"]["optim_value_iter"],
states=mini_batch_state,
actions=mini_batch_action,
returns=mini_batch_return,
old_log_probs=mini_batch_old_log_prob,
advantages=mini_batch_advantage,
clip_epsilon=self.config["train"]["generator"]["clip_ratio"],
l2_reg=self.config["value"]["l2_reg"])
else:
v_loss, p_loss, ent_loss = ppo_step(policy_net=self.policy,
value_net=self.value,
optimizer_policy=self.optimizer_policy,
optimizer_value=self.optimizer_value,
optim_value_iternum=self.config["value"]["optim_value_iter"],
states=gen_batch_state,
actions=gen_batch_action,
returns=gen_batch_return,
old_log_probs=gen_batch_old_log_prob,
advantages=gen_batch_advantage,
clip_epsilon=self.config["train"]["generator"]["clip_ratio"],
l2_reg=self.config["value"]["l2_reg"])
writer.add_scalar('generator/p_loss', p_loss, i_iter)
writer.add_scalar('generator/v_loss', v_loss, i_iter)
writer.add_scalar('generator/ent_loss', ent_loss, i_iter)
print(f" Training episode:{i_iter} ".center(80, "#"))
print('d_gen_prob:', gen_prob.mean().item())
print('d_expert_prob:', expert_prob.mean().item())
print('d_loss:', d_loss.item())
print('e_loss:', e_loss.item())
print("d/bernoulli_entropy:", entropy.item())
def eval(self, i_iter, render=False):
self.policy.eval()
self.value.eval()
self.discriminator.eval()
state = self.env.reset()
test_reward = 0
while True:
if render:
self.env.render()
if self.running_state:
state = self.running_state(state)
action, _ = self.choose_action(state)
action = action.cpu().numpy()[0]
state, reward, done, _ = self.env.step(action)
test_reward += reward
if done:
break
print(f"Iter: {i_iter}, test Reward: {test_reward}")
self.env.close()
def save_model(self, save_path):
check_path(save_path)
# torch.save((self.discriminator, self.policy, self.value), f"{save_path}/{self.exp_name}.pt")
torch.save(self.discriminator,
f"{save_path}/{self.env_id}_Discriminator.pt")
torch.save(self.policy, f"{save_path}/{self.env_id}_Policy.pt")
torch.save(self.value, f"{save_path}/{self.env_id}_Value.pt")
def load_model(self, model_path):
# load entire model
# self.discriminator, self.policy, self.value = torch.load(model_path, map_location=device)
self.discriminator = torch.load(
f"{model_path}_Discriminator.pt", map_location=device)
self.policy = torch.load(
f"{model_path}_Policy.pt", map_location=device)
self.value = torch.load(f"{model_path}_Value.pt", map_location=device)