From 67eed8bf5287bd79068c47eb7debffc654e58244 Mon Sep 17 00:00:00 2001 From: Fabiana Campanari Date: Wed, 12 Jun 2024 01:45:20 -0300 Subject: [PATCH] Update README.md Signed-off-by: Fabiana Campanari --- README.md | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index dec7bce..0ba7933 100644 --- a/README.md +++ b/README.md @@ -48,6 +48,10 @@ $$\large 3 + 3 = 6$$ $$\lim_{{x \to -7}} \frac{{49 - x^2}}{{7 + x}}$$ +
+ +* **Simplified Form:** The numerator $\large ( 49 - x^2 )$ is a difference of squares and can be factored as $\large (7 + x)(7 - x)$. + @@ -58,7 +62,7 @@ $$\lim_{{x \to -7}} \frac{{49 - x^2}}{{7 + x}}$$ # -### 1c) +#### 1c) @@ -66,14 +70,14 @@ $$\lim_{{x \to -7}} \frac{{49 - x^2}}{{7 + x}}$$ # -### 1d) $ +#### 1d) $ # -### 1e) $$\lim_{{x \to 1}} \frac{{x^2 - 2x + 1}}{{x - 1}}$$ +#### 1e) $$\lim_{{x \to 1}} \frac{{x^2 - 2x + 1}}{{x - 1}}$$ To calculate the limit, we can simplify the expression by factoring the numerator, which is a perfect square trinomial. Factoring (x^2 - 2x + 1), we get ((x - 1)(x - 1)). The denominator is already in factored form as (x - 1). Thus, the function simplifies to: