diff --git a/README.md b/README.md index fac88de..6a8c763 100644 --- a/README.md +++ b/README.md @@ -144,7 +144,7 @@ Result: The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$ # -### 1h) $$\(\lim_{{x \to \infty}} \frac{{x^2}}{{2x^2 - x}}\)$$ +### 1h: $$\(\lim_{{x \to \infty}} \frac{{x^2}}{{2x^2 - x}}\)$$ In this case, we can use L'Hôpital's rule, as the limit is of the form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) when \(x\) tends to infinity. @@ -164,7 +164,11 @@ $$\ # - + +## 2.Calculate the Following Limits + + +