From c0435b26fa93c5b697c1b1bb05604d240ffd63da Mon Sep 17 00:00:00 2001 From: Fabiana Campanari Date: Tue, 28 May 2024 00:04:38 -0300 Subject: [PATCH] Update README.md Signed-off-by: Fabiana Campanari --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index aec4f42..5a36ea7 100644 --- a/README.md +++ b/README.md @@ -148,7 +148,7 @@ Result: The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$ In this case, we can use L'Hôpital's rule, as the limit is of the form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) when \(x\) tends to infinity. -\[ +$$\ \begin{align*} \lim_{{x \to \infty}} \frac{{x^2}}{{2x^2 - x}} &= \lim_{{x \to \infty}} \frac{{\frac{d}{dx}[x^2]}}{{\frac{d}{dx}[2x^2 - x]}} \\ &= \lim_{{x \to \infty}} \frac{{2x}}{{4x - 1}} \\ @@ -156,7 +156,7 @@ In this case, we can use L'Hôpital's rule, as the limit is of the form \(\frac{ &= \frac{2}{4} \\ &= \frac{1}{2} \end{align*} -\] +\$$