diff --git a/README.md b/README.md index d248d36..8b3671a 100644 --- a/README.md +++ b/README.md @@ -34,7 +34,7 @@ $$lim_{{x \to 3}} \frac{{x^2 - 9}}{{x - 3}}$$
-* **Simplified Form:** The numerator $\large x^2 - 9$, can be factored as ( (x + 3)(x - 3) ), which simplifies the expression to: +* **Simplified Form:** The numerator $$\large x^2 - 9$$, can be factored as (x + 3)(x - 3) ), which simplifies the expression to:
@@ -45,9 +45,9 @@ $$\\begin{align*}
-* **Final Result:** Substituting ( x ) with 3, we get: +* [**Final Result:**]() -
+Substituting ( x ) with 3, we get: $$\large 3 + 3 = 6$$ @@ -75,7 +75,9 @@ $$\large \lim_{{x \to -7}} (7 - x)
$$
-* **Final Result:** When we substitute ( x ) with -7, the expression simplifies to:
7 - (-7) = 14 +* [**Final Result:**]() + +When we substitute ( x ) with -7, the expression simplifies to:
7 - (-7) = 14
@@ -85,65 +87,18 @@ $$\large \lim_{{x \to -7}} (7 - x)
$$ # -#### 1c) 8 88**Limit Expression:**
 - -$$lim_{{\Large \to 1}} \frac{{x^2 - 4x + 3}}{{x - 1}}$$ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +### 1c) **Limit Expression:**
 +$$lim_{{\Large \to 1}} \frac{{x^2 - 4x + 3}}{{x - 1}}$$n +
- +### 1d) **Limit Expression:**
 -#### 1e) $$\lim_{{x \to 1}} \frac{{x^2 - 2x + 1}}{{x - 1}}$$ +$$\lim_{{x \to 1}} \frac{{x^2 - 2x + 1}}{{x - 1}}$$ +
To calculate the limit, we can simplify the expression by factoring the numerator, which is a perfect square trinomial. Factoring (x^2 - 2x + 1), we get ((x - 1)(x - 1)). The denominator is already in factored form as (x - 1). Thus, the function simplifies to: @@ -157,11 +112,17 @@ Since there are no more terms that depend on ( x ), this simplifies to: $$\lim_{{x \to 1}} = x - 1 = 0$$ -Result: The limit of the function as ( x ) approaches 1 is simply 0. +[Final Result:]() + +The limit of the function as ( x ) approaches 1 is simply 0. # -### 1f) $$\lim_{{x \to 2}} \frac{{x - 2}}{{x^2 - 4}}$$ +### 1e) **Limit Expression:**
 + +$$\lim_{{x \to 2}} \frac{{x - 2}}{{x^2 - 4}}$$ + +
To solve this limit, we need to factor the denominator and simplify the expression. The denominator ( x^2 - 4 ) can be factored into ( (x + 2)(x - 2) ), which allows us to cancel out the ( x - 2 ) term in the numerator: @@ -173,13 +134,17 @@ $$\frac{1}{4}$$
-Result: The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$$ +[Final Result:]() + +The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$$ # -### 1g) $$\(\lim_{{x \to 3}} \frac{{x^3 - 27}}{{x^2 - 5x + 6}}\)$$ +### 1f) **Limit Expression:**
 + +$$\(\lim_{{x \to 3}} \frac{{x^3 - 27}}{{x^2 - 5x + 6}}\)$$
@@ -197,12 +162,18 @@ $$\
-Result: The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$$ +[FINAL Result:]() + +The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$$ # -### 1h: $$\(\lim_{{x \to \infty}} \frac{{x^2}}{{2x^2 - x}}\)$$ +### 1g: **Limit Expression:**
 + +$$\(\lim_{{x \to \infty}} \frac{{x^2}}{{2x^2 - x}}\)$$ + +
In this case, we can use L'Hôpital's rule, as the limit is of the form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) when \(x\) tends to infinity. @@ -216,16 +187,21 @@ $$\ \end{align*} \$$ -
- Result: The limit of the expression is $$\frac{1}{2}$$ +[Final Result:]() + + The limit of the expression is $$\frac{1}{2}$$ -

+# + +## [2. Solve the Limits:]() -## 2. Solve the Limits: +### 2a): **Limit Expression:**
 -### 2a): ( $\lim_{x \to \infty} \frac{1}{x^2}$ ) + $\lim_{x \to \infty} \frac{1}{x^2}$ + +
The limit as ( x ) approaches infinity for ( $\frac{1}{{x^2}}$ ): @@ -236,7 +212,11 @@ As ( x ) increases without bound, the value of ( \frac{1}{{x^2}} ) approaches 0 # -### 2b): ( $\lim_{x \to -\infty} \frac{1}{x^2}$ ) +### 2b) **Limit Expression:**
 + +( $\lim_{x \to -\infty} \frac{1}{x^2}$ ) + +
The limit as ( x ) approaches negative infinity for ( $\frac{1}{{x^2}}$ ) is:
 @@ -246,30 +226,25 @@ As ( x ) decreases without bound, the value of ( $\frac{1}{{x^2}}$ ) approaches # -### 2c): ( $\lim_{x \to \infty} x^4$
) +### 2c) **Limit Expression:**
 -The limit as ( x ) approaches infinity for ( x^4 ) is:
grows at an increasing rate and approaches infinity for ( x^4 ) is: +$\lim_{x \to \infty} x^4$
 -$\lim_{{x \to \infty}} x^4 = \infty$ +
+The limit as ( x ) approaches infinity for ( x^4 ) is:
grows at an increasing rate and approaches infinity for ( x^4 ) is: -If you have more expressions or need further assistance, feel free to ask! +$\lim_{{x \to \infty}} x^4 = \infty$ Similar to the previous expressions, the term ( 2x^5 ) grows at a faster rate than the others, causing the expression to approach infinity. # -### 2d): ( $\lim_{{x \to \infty}} (2x^4 - 3x^3 + x + 6)$ ) - -The limit as ( x ) approaches infinity for ( $2x^4 - 3x^3 + x + 6$ ) is: - -$\lim_{x \to \infty} (2x^4 - 3x^3 + x + 6) = \infty$
 +### 2d) **Limit Expression:**
 -As ( x ) grows larger, the term ( 2x^4 ) dominates, leading the expression to increase without bound. +$\lim_{{x \to \infty}} (2x^4 - 3x^3 + x + 6)$ -# - -### 2e): +
The limit as ( x ) approaches negative infinity for ( 2x^4 - 3x^3 + x + 6 ) is: @@ -280,19 +255,27 @@ Even though ( x ) is negative, the highest power term ( x^4 ) will still lead t # -### 2f) : The limit as ( x ) approaches infinity for ( 2x^5 - 3x^2 + 6 ) is:
 +### 2e) **Limit Expression:**
 + +2x^5 - 3x^2 + 6 + +
+ +The limit as ( x ) approaches infinity for ( 2x^5 - 3x^2 + 6 ) is:
 The limit as ( x ) approaches negative infinity for ( 2x^4 - 3x^3 + x + 6 ) is:
 -$\lim_{x \to -\infty} (2x^4 - 3x^3 + x + 6) = \infty

Even though ( x ) is negative, y. --- +$\lim_{x \to -\infty} (2x^4 - 3x^3 + x + 6) = \infty$ -# +Even though ( x ) is negative, y. -These processes demonstrates how limits help us understand the behavior of functions near points that might not be defined, by finding equivalent expressions that are easier to evaluate. # +## These processes above demonstrates how limits help us understand the behavior of functions near points that might not be defined, by finding equivalent expressions that are easier to evaluate. + +
+ ######

[Copyright 2024 Quantum Software Development. Code released under the MIT License license.](https://github.com/Quantum-Software-Development/Math/blob/3bf8270ca09d3848f2bf22f9ac89368e52a2fb66/LICENSE)