Skip to content

Commit dd184c8

Browse files
Merge branch 'main' into dependabot/github_actions/github/codeql-action-3.25.7
Signed-off-by: Fabiana Campanari <fabicampanari@gmail.com>
2 parents 9768125 + fc47657 commit dd184c8

File tree

1 file changed

+79
-67
lines changed

1 file changed

+79
-67
lines changed

README.md

Lines changed: 79 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@
55

66
<br><br>
77

8-
## <p align="center"> ✍️ Resolution of Mathematics Exercises - Calculus - Limits and Derivatives
8+
## <p align="center"> ✍️ Resolution of Mathematics Exercises - Calculus I - Limits and Derivatives
99

10-
#### <p align="center"> AI Data Science - PUCSP University Repository - [Professor Eric Bacconi Gonçalves](https://www.linkedin.com/in/eric-bacconi-423137/)
10+
#### <p align="center"> AI Data Science - PUCSP University Math Repository - [Professor Eric Bacconi Gonçalves](https://www.linkedin.com/in/eric-bacconi-423137/)
1111

1212
<br><br>
1313

@@ -17,6 +17,9 @@
1717

1818
### 1a) Limit Expression:
$\lim_{{x \to 3}} \frac{{x^2 - 9}}{{x - 3}}$
1919

20+
#### 1a) **Limit Expression:**
21+
22+
2023

2124
<!--
2225
<p align="center"> To solve this limit, we can use factorization:
@@ -26,15 +29,37 @@ $$\\begin{align*}
2629
&= \lim_{x \to 3}(x+3) \\
2730
&= 3+3
2831
&= 6
32+
\large \lim_{{x \to 3}} \frac{{x^2 - 9}}{{x - 3}}
2933
\end{align*}
3034
\$$
3135
3236
-->
3337

3438
<br>
3539

36-
Result: The limit of the expression is 6.
40+
* **Simplified Form:** The numerator $\large x^2 - 9$, can be factored as ( (x + 3)(x - 3) ), which simplifies the expression to:
41+
42+
<br>
43+
44+
$$\\begin{align*}
45+
\large \lim_{{x \to 3}} (x + 3)

46+
\end{align*}
47+
\$$
48+
49+
<br>
50+
51+
* **Final Result:** Substituting ( x ) with 3, we get:
3752

53+
<br>
54+
55+
$$\large 3 + 3 = 6$$
56+
57+
<br>
58+
59+
* **Explanation:** The limit as ( x ) approaches 3 for the function $\large \frac{{x^2 - 9}}{{x - 3}}$ is 6.
60+
61+
This is because the factor ( x - 3 ) in the denominator cancels out with the same factor in the numerator, leaving ( x + 3 ) which evaluates to 6 when ( x ) is 3.
62+
3863
#
3964

4065
### 1b) $$\(\lim_{x \to -7}\frac{49-x^{2}}{7+x}\)$$
@@ -81,9 +106,7 @@ Therefore, the limit of the function as ( x ) approaches 1 is -2.
81106

82107
$$f(1) = -2$$
83108

84-
&= \frac{1}{2}
85-
\end{align*}
86-
\]
109+
<br>
87110

88111
Result: The limit of the expression is -2.
89112

@@ -130,7 +153,7 @@ Result: The limit of the function as ( x ) approaches 1 is simply $$\frac{1}{4}$
130153

131154
<br>
132155

133-
<p align="center">This limit can be solved using factorization and polynomial division: <br><br>
156+
This limit can be solved using factorization and polynomial division: <br><br>
134157

135158
$$\
136159
\begin{align*}
@@ -167,60 +190,84 @@ $$\
167190

168191
Result: The limit of the expression is $$\frac{1}{2}$$
169192

193+
<br><br>
194+
195+
## 2. Solve the Limits:
196+
197+
198+
### 2a): ( $\lim_{x \to \infty} \frac{1}{x^2}$ )
199+
200+
The limit as ( x ) approaches infinity for ( $\frac{1}{{x^2}}$ ):
201+
202+
is:
$\lim_{{x \to \infty}} \frac{1}{{x^2}} = 0$

203+
204+
As ( x ) increases without bound, the value of ( \frac{1}{{x^2}} ) approaches 0 because the denominator grows much faster than the numerator.
205+
170206
#
171207

172-
<br><br>
173208

209+
### 2b): ( $\lim_{x \to -\infty} \frac{1}{x^2}$ )
174210

211+
The limit as ( x ) approaches negative infinity for ( $\frac{1}{{x^2}}$ ) is:

175212

176-
<br>
213+
$\lim_{{x \to -\infty}} \frac{1}{{x^2}} = 0$
177214

178-
$$x→∞lim (2x4−3x3+x+6)=∞$$
215+
As ( x ) decreases without bound, the value of ( $\frac{1}{{x^2}}$ ) approaches 0, similar to part a), because squaring a negative number results in a positive number, which grows larger.
179216

180-
<br><br>
217+
#
181218

182-
## 2 Limits Solutions:
219+
### 2c): ( $\lim_{x \to \infty} x^4$
)
183220

184-
### 2a)
221+
The limit as ( x ) approaches infinity for ( x^4 ) is:
grows at an increasing rate and approaches infinity for ( x^4 ) is:
185222

186-
$$\lim_{x \to \infty} \frac{1}{x^2}$$
223+
$\lim_{{x \to \infty}} x^4 = \infty$
187224

188-
<br>
189225

190-
#### As x approaches infinity, the denominator ($x^2$) grows infinitely large, while the numerator remains constant at 1. This means the fraction becomes increasingly small, approaching zero.
226+
If you have more expressions or need further assistance, feel free to ask!
191227

192-
<br>
228+
Similar to the previous expressions, the term ( 2x^5 ) grows at a faster rate than the others, causing the expression to approach infinity.
193229

194-
Solution:
230+
#
195231

196-
$$\lim_{x \to \infty} \frac{1}{x^2} = 0$$
232+
### 2d): ( $\lim_{{x \to \infty}} (2x^4 - 3x^3 + x + 6)$ )
197233

198-
<br><br>
234+
The limit as ( x ) approaches infinity for ( $2x^4 - 3x^3 + x + 6$ ) is:
199235

200-
## 2b)
236+
$\lim_{x \to \infty} (2x^4 - 3x^3 + x + 6) = \infty$

201237

202-
$$\lim_{x \to -\infty} \frac{1}{x^2}$$
238+
As ( x ) grows larger, the term ( 2x^4 ) dominates, leading the expression to increase without bound.
203239

204-
Similar to the previous case, as x approaches negative infinity, the denominator ($x^2$) grows infinitely large (but remains positive), and the numerator remains constant at 1.
240+
#
205241

206-
<BR>
242+
### 2e):
207243

208-
The fraction becomes increasingly small, approaching zero.
244+
The limit as ( x ) approaches negative infinity for ( 2x^4 - 3x^3 + x + 6 ) is:
209245

210-
<BR>
246+
$\lim_{x \to -\infty} (2x^4 - 3x^3 + x + 6) = \infty$

211247

212-
Solution:
248+
Even though ( x ) is negative, the highest power term ( x^4 ) will still lead the expression to increase without bound because the even power makes it positive.
213249

214-
$$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$
215250

216251
#
217252

218-
3c)
253+
### 2f) : The limit as ( x ) approaches infinity for ( 2x^5 - 3x^2 + 6 ) is:

254+
255+
The limit as ( x ) approaches negative infinity for ( 2x^4 - 3x^3 + x + 6 ) is:

256+
257+
$\lim_{x \to -\infty} (2x^4 - 3x^3 + x + 6) = \infty

Even though ( x ) is negative, y.
258+
259+
260+
261+
262+
219263

220264

221265

222266

223267

268+
269+
270+
224271

225272

226273

@@ -247,6 +294,9 @@ $$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$
247294

248295

249296

297+
298+
299+
<!--
250300
<br><br>
251301
252302
## 3.Calculate the Following Limits
@@ -287,44 +337,6 @@ $$f(x)=cxm+fxm−1+...+gx+haxn+bxn−1+...+dx+e$$
287337
In this case, the highest-order term in the numerator is 2x4, and the highest-order term in the denominator is x3.
288338
289339
As x approaches infinity, 2x4 grows much faster than x3, and so the function f(x) approaches zero.
290-
291-
292-
293-
294-
295-
296-
297-
298-
299-
300-
301-
302-
303-
304-
305-
306-
#
307-
308-
309-
310-
311-
312-
313-
314-
315-
316-
317-
318-
319-
320-
321-
322-
323-
324-
325-
326-
327-
328340
329341
330342

0 commit comments

Comments
 (0)