Skip to content

Commit cf54df4

Browse files
Update README.md
Signed-off-by: Fabiana Campanari <fabicampanari@gmail.com>
1 parent c46f4e6 commit cf54df4

File tree

1 file changed

+5
-30
lines changed

1 file changed

+5
-30
lines changed

README.md

Lines changed: 5 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -44,53 +44,28 @@ $$\large 3 + 3 = 6$$
4444

4545
#
4646

47-
### 1b) $$\(\lim_{x \to -7}\frac{49-x^{2}}{7+x}\)$$
47+
### 1b)
4848

49-
Again, we can use factorization:
5049

51-
$$\\begin{align*}
52-
\lim_{{x \to -7}} \frac{{49 - x^2}}{{7 + x}} &= \lim_{{x \to -7}} \frac{{(7 + x)(7 - x)}}{{7 + x}} \\
53-
&= \lim_{{x \to -7}} (7 - x) \\
54-
&= -7 - 7 \\
55-
&= -14
56-
\end{align*}
57-
\$$
58-
59-
Result: The limit of the expression is -14.
60-
61-
#
6250

63-
### 1c) $$\lim_{{x \to 0}} \frac{x^3}{2x^2 - x}$$
6451

65-
We factor out ( x ) from the denominator:
6652

67-
$$= \lim_{{x \to 0}} \frac{x^3}{x(2x - 1)}$$
6853

69-
We cancel out an ( x^2 ) term from the numerator and denominator:
70-
71-
$$= \lim_{{x \to 0}} \frac{x}{(2x - 1)} =\frac{0}{-1} = 0$$
72-
73-
Result: The limit of the expression is 0.
7454

7555
#
7656

77-
### 1d) $$f(x) = \lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1}$$
57+
### 1c)
7858

79-
To calculate the limit, we can simplify the expression by factoring the numerator, which results in:
8059

81-
$$(x-1)(x-3)$$
8260

83-
By canceling out the ( x-1 ) term with the denominator, we get:
8461

85-
$$f(x) = \lim_{x \to 1} (x-3)$$
8662

87-
Therefore, the limit of the function as ( x ) approaches 1 is -2.
63+
#
64+
65+
### 1d) $
8866

89-
$$f(1) = -2$$
9067

91-
<br>
9268

93-
Result: The limit of the expression is -2.
9469

9570
#
9671

0 commit comments

Comments
 (0)