|
| 1 | +--- |
| 2 | +jupytext: |
| 3 | + text_representation: |
| 4 | + extension: .md |
| 5 | + format_name: myst |
| 6 | + format_version: 0.13 |
| 7 | + jupytext_version: 1.16.4 |
| 8 | +kernelspec: |
| 9 | + display_name: Python 3 (ipykernel) |
| 10 | + language: python |
| 11 | + name: python3 |
| 12 | +--- |
| 13 | + |
| 14 | +# Simple Neural Network Regression with Keras and JAX |
| 15 | + |
| 16 | +```{include} _admonition/gpu.md |
| 17 | +``` |
| 18 | + |
| 19 | +In this lecture we show how to implement one-dimensional nonlinear regression |
| 20 | +using a neural network. |
| 21 | + |
| 22 | +We will use the popular deep learning library [Keras](https://keras.io/), which |
| 23 | +provides a simple and elegant interface to deep learning. |
| 24 | + |
| 25 | +The emphasis in Keras on providing an intuitive API, while the heavy lifting is |
| 26 | +done by another library. |
| 27 | + |
| 28 | +Currently the backend library can be Tensorflow, PyTorch, or JAX. |
| 29 | + |
| 30 | +In this lecture we will use JAX. |
| 31 | + |
| 32 | +The objective of this lecture is to provide a very simple introduction to deep |
| 33 | +learning in a regression setting. |
| 34 | + |
| 35 | +We begin with some standard imports. |
| 36 | + |
| 37 | +```{code-cell} ipython3 |
| 38 | +import numpy as np |
| 39 | +import matplotlib.pyplot as plt |
| 40 | +``` |
| 41 | + |
| 42 | +Let's install Keras. |
| 43 | + |
| 44 | +```{code-cell} ipython3 |
| 45 | +:tags: [hide-output] |
| 46 | +
|
| 47 | +!pip install keras |
| 48 | +``` |
| 49 | + |
| 50 | +Now we specify that the desired backend is JAX. |
| 51 | + |
| 52 | +```{code-cell} ipython3 |
| 53 | +import os |
| 54 | +os.environ['KERAS_BACKEND'] = 'jax' |
| 55 | +``` |
| 56 | + |
| 57 | +Next we import some tools from Keras. |
| 58 | + |
| 59 | +```{code-cell} ipython3 |
| 60 | +import keras |
| 61 | +from keras.models import Sequential |
| 62 | +from keras.layers import Dense |
| 63 | +``` |
| 64 | + |
| 65 | +```{code-cell} ipython3 |
| 66 | +Dense? |
| 67 | +``` |
| 68 | + |
| 69 | +## Data |
| 70 | + |
| 71 | +First let's write a function to generate some data. |
| 72 | + |
| 73 | +The data has the form |
| 74 | + |
| 75 | +$$ |
| 76 | + y_i = f(x_i) + \epsilon_i, |
| 77 | + \qquad i=1, \ldots, n |
| 78 | +$$ |
| 79 | + |
| 80 | +The map $f$ is specified inside the function and $\epsilon_i$ is an independent |
| 81 | +draw from a fixed normal distribution. |
| 82 | + |
| 83 | +Here's the function that creates vectors `x` and `y` according to the rule |
| 84 | +above. |
| 85 | + |
| 86 | +```{code-cell} ipython3 |
| 87 | +def generate_data(x_min=0, x_max=5, data_size=400): |
| 88 | + x = np.linspace(x_min, x_max, num=data_size) |
| 89 | + x = x.reshape(data_size, 1) |
| 90 | + ϵ = 0.2 * np.random.randn(*x.shape) |
| 91 | + y = x**0.5 + np.sin(x) + ϵ |
| 92 | + x, y = [z.astype('float32') for z in (x, y)] |
| 93 | + return x, y |
| 94 | +``` |
| 95 | + |
| 96 | +Now we generate some data to train the model. |
| 97 | + |
| 98 | +```{code-cell} ipython3 |
| 99 | +x, y = generate_data() |
| 100 | +``` |
| 101 | + |
| 102 | +Here's a plot of the training data. |
| 103 | + |
| 104 | +```{code-cell} ipython3 |
| 105 | +fig, ax = plt.subplots() |
| 106 | +ax.scatter(x, y) |
| 107 | +ax.set_xlabel('x') |
| 108 | +ax.set_ylabel('y') |
| 109 | +plt.show() |
| 110 | +``` |
| 111 | + |
| 112 | +We'll also use data from the same process for cross-validation. |
| 113 | + |
| 114 | +```{code-cell} ipython3 |
| 115 | +x_validate, y_validate = generate_data() |
| 116 | +``` |
| 117 | + |
| 118 | +## Models |
| 119 | + |
| 120 | +We supply functions to build two types of models. |
| 121 | + |
| 122 | +The first implements linear regression. |
| 123 | + |
| 124 | +This is achieved by constructing a neural network with just one layer, that maps |
| 125 | +to a single dimension (since the prediction is real-valued). |
| 126 | + |
| 127 | +The input `model` will be an instance of `keras.Sequential`, which is used to |
| 128 | +group a stack of layers into a single prediction model. |
| 129 | + |
| 130 | +```{code-cell} ipython3 |
| 131 | +def build_regression_model(model): |
| 132 | + model.add(Dense(units=1)) |
| 133 | + model.compile(optimizer=keras.optimizers.SGD(), |
| 134 | + loss='mean_squared_error') |
| 135 | + return model |
| 136 | +``` |
| 137 | + |
| 138 | +In the function above you can see that we use stochastic gradient descent to |
| 139 | +train the model, and that the loss is mean squared error (MSE). |
| 140 | + |
| 141 | +MSE is the standard loss function for ordinary least squares regression. |
| 142 | + |
| 143 | +The second function creates a dense (i.e., fully connected) neural network with |
| 144 | +3 hidden layers, where each hidden layer maps to a k-dimensional output space. |
| 145 | + |
| 146 | +```{code-cell} ipython3 |
| 147 | +def build_nn_model(model, k=10, activation_function='tanh'): |
| 148 | + # Construct network |
| 149 | + model.add(Dense(units=k, activation=activation_function)) |
| 150 | + model.add(Dense(units=k, activation=activation_function)) |
| 151 | + model.add(Dense(units=k, activation=activation_function)) |
| 152 | + model.add(Dense(1)) |
| 153 | + # Embed training configurations |
| 154 | + model.compile(optimizer=keras.optimizers.SGD(), |
| 155 | + loss='mean_squared_error') |
| 156 | + return model |
| 157 | +``` |
| 158 | + |
| 159 | +The following function will be used to plot the MSE of the model during the |
| 160 | +training process. |
| 161 | + |
| 162 | +Initially the MSE will be relatively high, but it should fall at each iteration, |
| 163 | +as the parameters are adjusted to better fit the data. |
| 164 | + |
| 165 | +```{code-cell} ipython3 |
| 166 | +def plot_loss_history(training_history, ax): |
| 167 | + ax.plot(training_history.epoch, |
| 168 | + np.array(training_history.history['loss']), |
| 169 | + label='training loss') |
| 170 | + ax.plot(training_history.epoch, |
| 171 | + np.array(training_history.history['val_loss']), |
| 172 | + label='validation loss') |
| 173 | + ax.set_xlabel('Epoch') |
| 174 | + ax.set_ylabel('Loss (Mean squared error)') |
| 175 | + ax.legend() |
| 176 | +``` |
| 177 | + |
| 178 | +## Training |
| 179 | + |
| 180 | +Now let's go ahead and train our models. |
| 181 | + |
| 182 | + |
| 183 | +### Linear regression |
| 184 | + |
| 185 | +We'll start with linear regression. |
| 186 | + |
| 187 | +First we create a `Model` instance using `Sequential()`. |
| 188 | + |
| 189 | +```{code-cell} ipython3 |
| 190 | +model = Sequential() |
| 191 | +regression_model = build_regression_model(model) |
| 192 | +``` |
| 193 | + |
| 194 | +Now we train the model using the training data. |
| 195 | + |
| 196 | +```{code-cell} ipython3 |
| 197 | +training_history = regression_model.fit( |
| 198 | + x, y, batch_size=x.shape[0], verbose=0, |
| 199 | + epochs=4000, validation_data=(x_validate, y_validate)) |
| 200 | +``` |
| 201 | + |
| 202 | +Let's have a look at the evolution of MSE as the model is trained. |
| 203 | + |
| 204 | +```{code-cell} ipython3 |
| 205 | +fig, ax = plt.subplots() |
| 206 | +plot_loss_history(training_history, ax) |
| 207 | +plt.show() |
| 208 | +``` |
| 209 | + |
| 210 | +Let's print the final MSE on the cross-validation data. |
| 211 | + |
| 212 | +```{code-cell} ipython3 |
| 213 | +print("Testing loss on the validation set.") |
| 214 | +regression_model.evaluate(x_validate, y_validate) |
| 215 | +``` |
| 216 | + |
| 217 | +Here's our output predictions on the cross-validation data. |
| 218 | + |
| 219 | +```{code-cell} ipython3 |
| 220 | +y_predict = regression_model.predict(x_validate) |
| 221 | +``` |
| 222 | + |
| 223 | +We use the following function to plot our predictions along with the data. |
| 224 | + |
| 225 | +```{code-cell} ipython3 |
| 226 | +def plot_results(x, y, y_predict, ax): |
| 227 | + ax.scatter(x, y) |
| 228 | + ax.plot(x, y_predict, label="fitted model", color='black') |
| 229 | + ax.set_xlabel('x') |
| 230 | + ax.set_ylabel('y') |
| 231 | +``` |
| 232 | + |
| 233 | +Let's now call the function on the cross-validation data. |
| 234 | + |
| 235 | +```{code-cell} ipython3 |
| 236 | +fig, ax = plt.subplots() |
| 237 | +plot_results(x_validate, y_validate, y_predict, ax) |
| 238 | +plt.show() |
| 239 | +``` |
| 240 | + |
| 241 | +### Deep learning |
| 242 | + |
| 243 | +Now let's switch to a neural network with multiple layers. |
| 244 | + |
| 245 | +We implement the same steps as before. |
| 246 | + |
| 247 | +```{code-cell} ipython3 |
| 248 | +model = Sequential() |
| 249 | +nn_model = build_nn_model(model) |
| 250 | +``` |
| 251 | + |
| 252 | +```{code-cell} ipython3 |
| 253 | +training_history = nn_model.fit( |
| 254 | + x, y, batch_size=x.shape[0], verbose=0, |
| 255 | + epochs=4000, validation_data=(x_validate, y_validate)) |
| 256 | +``` |
| 257 | + |
| 258 | +```{code-cell} ipython3 |
| 259 | +fig, ax = plt.subplots() |
| 260 | +plot_loss_history(training_history, ax) |
| 261 | +plt.show() |
| 262 | +``` |
| 263 | + |
| 264 | +Here's the final MSE for the deep learning model. |
| 265 | + |
| 266 | +```{code-cell} ipython3 |
| 267 | +print("Testing loss on the validation set.") |
| 268 | +nn_model.evaluate(x_validate, y_validate) |
| 269 | +``` |
| 270 | + |
| 271 | +You will notice that this loss is much lower than the one we achieved with |
| 272 | +linear regression, suggesting a better fit. |
| 273 | + |
| 274 | +To confirm this, let's look at the fitted function. |
| 275 | + |
| 276 | +```{code-cell} ipython3 |
| 277 | +y_predict = nn_model.predict(x_validate) |
| 278 | +``` |
| 279 | + |
| 280 | +```{code-cell} ipython3 |
| 281 | +def plot_results(x, y, y_predict, ax): |
| 282 | + ax.scatter(x, y) |
| 283 | + ax.plot(x, y_predict, label="fitted model", color='black') |
| 284 | + ax.set_xlabel('x') |
| 285 | + ax.set_ylabel('y') |
| 286 | +``` |
| 287 | + |
| 288 | +```{code-cell} ipython3 |
| 289 | +fig, ax = plt.subplots() |
| 290 | +plot_results(x_validate, y_validate, y_predict, ax) |
| 291 | +plt.show() |
| 292 | +``` |
| 293 | + |
0 commit comments