-
Notifications
You must be signed in to change notification settings - Fork 758
Open
Description
Describe the bug
Unconditional generation did not produce MR volumes, despite setting modality=9
(which refers to MR T1w)
To Reproduce
Steps to reproduce the behavior:
- Select
maisi3d-ddpm
ormaisi3d-rflow
as the model. - Specify
modality
to 8 (mri
) or 9 (mri_t1
). - Run
diff_model_infer.py
Expected behavior
MRI volumes.
Screenshots

Additional context
I print out the args
just before the model inference, which confirms that modality
variable has been switched to MRI. But the generated volumes still look like CT volumes:
Namespace(
spatial_dims=3,
image_channels=1,
latent_channels=4,
include_body_region=False,
mask_generation_latent_shape=[4, 64, 64, 64],
autoencoder_def={'_target_': 'monai.apps.generation.maisi.networks.autoencoderkl_maisi.AutoencoderKlMaisi', 'spatial_dims': '@spatial_dims', 'in_channels': '@image_channels', 'out_channels': '@image_channels', 'latent_channels': '@latent_channels', 'num_channels': [64, 128, 256], 'num_res_blocks': [2, 2, 2], 'norm_num_groups': 32, 'norm_eps': 1e-06, 'attention_levels': [False, False, False], 'with_encoder_nonlocal_attn': False, 'with_decoder_nonlocal_attn': False, 'use_checkpointing': False, 'use_convtranspose': False, 'norm_float16': True, 'num_splits': 4, 'dim_split': 1},
diffusion_unet_def={'_target_': 'monai.apps.generation.maisi.networks.diffusion_model_unet_maisi.DiffusionModelUNetMaisi', 'spatial_dims': '@spatial_dims', 'in_channels': '@latent_channels', 'out_channels': '@latent_channels', 'num_channels': [64, 128, 256, 512], 'attention_levels': [False, False, True, True], 'num_head_channels': [0, 0, 32, 32], 'num_res_blocks': 2, 'use_flash_attention': True, 'include_top_region_index_input': '@include_body_region', 'include_bottom_region_index_input': '@include_body_region', 'include_spacing_input': True, 'num_class_embeds': 128, 'resblock_updown': True, 'include_fc': True},
controlnet_def={'_target_': 'monai.apps.generation.maisi.networks.controlnet_maisi.ControlNetMaisi', 'spatial_dims': '@spatial_dims', 'in_channels': '@latent_channels', 'num_channels': [64, 128, 256, 512], 'attention_levels': [False, False, True, True], 'num_head_channels': [0, 0, 32, 32], 'num_res_blocks': 2, 'use_flash_attention': True, 'conditioning_embedding_in_channels': 8, 'conditioning_embedding_num_channels': [8, 32, 64], 'num_class_embeds': 128, 'resblock_updown': True, 'include_fc': True},
mask_generation_autoencoder_def={'_target_': 'monai.apps.generation.maisi.networks.autoencoderkl_maisi.AutoencoderKlMaisi', 'spatial_dims': '@spatial_dims', 'in_channels': 8, 'out_channels': 125, 'latent_channels': '@latent_channels', 'num_channels': [32, 64, 128], 'num_res_blocks': [1, 2, 2], 'norm_num_groups': 32, 'norm_eps': 1e-06, 'attention_levels': [False, False, False], 'with_encoder_nonlocal_attn': False, 'with_decoder_nonlocal_attn': False, 'use_flash_attention': False, 'use_checkpointing': True, 'use_convtranspose': True, 'norm_float16': True, 'num_splits': 8, 'dim_split': 1},
mask_generation_diffusion_def={'_target_': 'monai.networks.nets.diffusion_model_unet.DiffusionModelUNet', 'spatial_dims': '@spatial_dims', 'in_channels': '@latent_channels', 'out_channels': '@latent_channels', 'channels': [64, 128, 256, 512], 'attention_levels': [False, False, True, True], 'num_head_channels': [0, 0, 32, 32], 'num_res_blocks': 2, 'use_flash_attention': True, 'with_conditioning': True, 'upcast_attention': True, 'cross_attention_dim': 10},
mask_generation_scale_factor=1.0055984258651733, noise_scheduler={'_target_': 'monai.networks.schedulers.rectified_flow.RFlowScheduler', 'num_train_timesteps': 1000, 'use_discrete_timesteps': False, 'use_timestep_transform': True, 'sample_method': 'uniform', 'scale': 1.4},
mask_generation_noise_scheduler={'_target_': 'monai.networks.schedulers.ddpm.DDPMScheduler', 'num_train_timesteps': 1000, 'beta_start': 0.0015, 'beta_end': 0.0195, 'schedule': 'scaled_linear_beta', 'clip_sample': False},
output_dir='output',
trained_autoencoder_path='models/autoencoder_epoch273.pt',
trained_diffusion_path='models/diff_unet_3d_rflow.pt',
trained_controlnet_path='models/controlnet_3d_rflow.pt', trained_mask_generation_autoencoder_path='models/mask_generation_autoencoder.pt',
trained_mask_generation_diffusion_path='models/mask_generation_diffusion_unet.pt',
all_mask_files_base_dir='datasets/all_masks_flexible_size_and_spacing_4000',
all_mask_files_json='./configs/candidate_masks_flexible_size_and_spacing_4000.json',
all_anatomy_size_conditions_json='./configs/all_anatomy_size_condtions.json',
label_dict_json='./configs/label_dict.json',
label_dict_remap_json='./configs/label_dict_124_to_132.json',
num_output_samples=1,
body_region=['brain'],
anatomy_list=['brain'],
controllable_anatomy_size=[],
num_inference_steps=1000,
mask_generation_num_inference_steps=1000,
output_size=[256, 256, 128],
image_output_ext='.nii.gz',
label_output_ext='.nii.gz',
spacing=[0.9375, 0.9375, 1.2109375],
autoencoder_sliding_window_infer_size=[48, 48, 48],
autoencoder_sliding_window_infer_overlap=0.6666,
controlnet='$@controlnet_def',
diffusion_unet='$@diffusion_unet_def',
autoencoder='$@autoencoder_def',
mask_generation_autoencoder='$@mask_generation_autoencoder_def', mask_generation_diffusion='$@mask_generation_diffusion_def',
modality=9,
random_seed=1995,
diffusion_unet_inference={'top_region_index': [1, 0, 0, 0], 'bottom_region_index': [1, 0, 0, 0], 'modality': 9, 'spacing': [0.9375, 0.9375, 1.2109375], 'dim': [256, 256, 128], 'num_inference_steps': 1000}
)
Metadata
Metadata
Assignees
Labels
No labels