|
| 1 | +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +""" |
| 16 | +Created in Mar. 2023 |
| 17 | +@author: Guan Wang |
| 18 | +""" |
| 19 | + |
| 20 | +import numpy as np |
| 21 | + |
| 22 | +import ppsci |
| 23 | +import ppsci.data.process.transform as transform |
| 24 | +import ppsci.utils.reader as reader |
| 25 | +from ppsci.utils import logger |
| 26 | + |
| 27 | +if __name__ == "__main__": |
| 28 | + # set random seed for reproducibility |
| 29 | + ppsci.utils.misc.set_random_seed(42) |
| 30 | + |
| 31 | + # set output directory |
| 32 | + output_dir = "./output_cylinder3d_unsteady_Re3900" |
| 33 | + |
| 34 | + # set reference file name without time index |
| 35 | + ref_file = "data/LBM_result/cylinder3d_2023_1_31_LBM_" |
| 36 | + |
| 37 | + # initialize logger |
| 38 | + logger.init_logger("ppsci", f"{output_dir}/train.log", "info") |
| 39 | + |
| 40 | + # set model |
| 41 | + model = ppsci.arch.MLP( |
| 42 | + ("t", "x", "y", "z"), |
| 43 | + ("u", "v", "w", "p"), |
| 44 | + 5, |
| 45 | + 512, |
| 46 | + ) |
| 47 | + |
| 48 | + # set equation and necessary constant |
| 49 | + RENOLDS_NUMBER = 3900 |
| 50 | + U0 = 0.1 |
| 51 | + D_CYLINDER = 80 |
| 52 | + RHO = 1 |
| 53 | + NU = RHO * U0 * D_CYLINDER / RENOLDS_NUMBER |
| 54 | + |
| 55 | + T_STAR = D_CYLINDER / U0 # 800 |
| 56 | + XYZ_STAR = D_CYLINDER # 80 |
| 57 | + UVW_STAR = U0 # 0.1 |
| 58 | + P_STAR = RHO * U0 * U0 # 0.01 |
| 59 | + # N-S, Re=3900, D=80, u=0.1, nu=80/3900; nu = rho u D / Re = 1.0 * 0.1 * 80 / 3900 |
| 60 | + equation = {"NavierStokes": ppsci.equation.NavierStokes(NU, RHO, 3, True)} |
| 61 | + |
| 62 | + # set geometry |
| 63 | + norm_factor = { |
| 64 | + "t": T_STAR, |
| 65 | + "x": XYZ_STAR, |
| 66 | + "y": XYZ_STAR, |
| 67 | + "z": XYZ_STAR, |
| 68 | + "u": UVW_STAR, |
| 69 | + "v": UVW_STAR, |
| 70 | + "w": UVW_STAR, |
| 71 | + "p": P_STAR, |
| 72 | + } |
| 73 | + normalize = transform.Scale({key: 1 / value for key, value in norm_factor.items()}) |
| 74 | + interior_data = reader.load_vtk_with_time_file( |
| 75 | + "data/sample_points/interior_txyz.vtu" |
| 76 | + ) |
| 77 | + geom = { |
| 78 | + "interior": ppsci.geometry.PointCloud( |
| 79 | + interior=normalize(interior_data), |
| 80 | + coord_keys=("t", "x", "y", "z"), |
| 81 | + ) |
| 82 | + } |
| 83 | + |
| 84 | + # set dataloader config |
| 85 | + batchsize_interior = 4000 |
| 86 | + batchsize_inlet = 256 |
| 87 | + batchsize_outlet = 256 |
| 88 | + batchsize_cylinder = 256 |
| 89 | + batchsize_top = 1280 |
| 90 | + batchsize_bottom = 1280 |
| 91 | + batchsize_ic = 6400 |
| 92 | + batchsize_supervised = 6400 |
| 93 | + |
| 94 | + # set time array |
| 95 | + INITIAL_TIME = 200000 |
| 96 | + START_TIME = 200050 |
| 97 | + END_TIME = 204950 |
| 98 | + TIME_STEP = 50 |
| 99 | + TIME_NUMBER = int((END_TIME - START_TIME) / TIME_STEP) + 1 |
| 100 | + time_list = np.linspace( |
| 101 | + int((START_TIME - INITIAL_TIME) / TIME_STEP), |
| 102 | + int((END_TIME - INITIAL_TIME) / TIME_STEP), |
| 103 | + TIME_NUMBER, |
| 104 | + endpoint=True, |
| 105 | + ).astype("int64") |
| 106 | + time_tmp = time_list * TIME_STEP |
| 107 | + time_index = np.random.choice(time_list, int(TIME_NUMBER / 2.5), replace=False) |
| 108 | + time_index.sort() |
| 109 | + time_array = time_index * TIME_STEP |
| 110 | + |
| 111 | + # set constraint |
| 112 | + train_dataloader_cfg = { |
| 113 | + "sampler": { |
| 114 | + "name": "BatchSampler", |
| 115 | + "shuffle": False, |
| 116 | + "drop_last": False, |
| 117 | + }, |
| 118 | + "num_workers": 1, |
| 119 | + } |
| 120 | + # interior data |
| 121 | + pde_constraint = ppsci.constraint.InteriorConstraint( |
| 122 | + equation["NavierStokes"].equations, |
| 123 | + {"continuity": 0, "momentum_x": 0, "momentum_y": 0, "momentum_z": 0}, |
| 124 | + geom["interior"], |
| 125 | + evenly=True, |
| 126 | + dataloader_cfg={ |
| 127 | + **train_dataloader_cfg, |
| 128 | + "iters_per_epoch": int(geom["interior"].len / batchsize_interior), |
| 129 | + "dataset": "NamedArrayDataset", |
| 130 | + "batch_size": batchsize_interior, |
| 131 | + }, |
| 132 | + loss=ppsci.loss.MSELoss("mean", 1), |
| 133 | + name="INTERIOR", |
| 134 | + ) |
| 135 | + |
| 136 | + norm_cfg = { |
| 137 | + "Scale": {"scale": {key: 1 / value for key, value in norm_factor.items()}} |
| 138 | + } |
| 139 | + bc_inlet = ppsci.constraint.SupervisedConstraint( |
| 140 | + dataloader_cfg={ |
| 141 | + **train_dataloader_cfg, |
| 142 | + "dataset": { |
| 143 | + "name": "VtuDataset", |
| 144 | + "file_path": "data/sample_points/inlet_txyz.vtu", |
| 145 | + "input_keys": model.input_keys, |
| 146 | + "label_keys": ("u", "v", "w"), |
| 147 | + "labels": {"u": 0.1, "v": 0, "w": 0}, |
| 148 | + "transforms": [norm_cfg], |
| 149 | + }, |
| 150 | + "batch_size": batchsize_inlet, |
| 151 | + }, |
| 152 | + loss=ppsci.loss.MSELoss("mean", 2), |
| 153 | + name="BC_INLET", |
| 154 | + ) |
| 155 | + bc_cylinder = ppsci.constraint.SupervisedConstraint( |
| 156 | + dataloader_cfg={ |
| 157 | + **train_dataloader_cfg, |
| 158 | + "dataset": { |
| 159 | + "name": "VtuDataset", |
| 160 | + "file_path": "data/sample_points/cylinder_txyz.vtu", |
| 161 | + "input_keys": model.input_keys, |
| 162 | + "label_keys": ("u", "v", "w"), |
| 163 | + "labels": {"u": 0, "v": 0, "w": 0}, |
| 164 | + "transforms": [norm_cfg], |
| 165 | + }, |
| 166 | + "batch_size": batchsize_cylinder, |
| 167 | + }, |
| 168 | + loss=ppsci.loss.MSELoss("mean", 5), |
| 169 | + name="BC_CYLINDER", |
| 170 | + ) |
| 171 | + bc_outlet = ppsci.constraint.SupervisedConstraint( |
| 172 | + dataloader_cfg={ |
| 173 | + **train_dataloader_cfg, |
| 174 | + "dataset": { |
| 175 | + "name": "VtuDataset", |
| 176 | + "file_path": "data/sample_points/outlet_txyz.vtu", |
| 177 | + "input_keys": model.input_keys, |
| 178 | + "label_keys": ("p",), |
| 179 | + "labels": {"p": 0}, |
| 180 | + "transforms": [norm_cfg], |
| 181 | + }, |
| 182 | + "batch_size": batchsize_outlet, |
| 183 | + }, |
| 184 | + loss=ppsci.loss.MSELoss("mean", 1), |
| 185 | + name="BC_OUTLET", |
| 186 | + ) |
| 187 | + |
| 188 | + bc_top = ppsci.constraint.SupervisedConstraint( |
| 189 | + dataloader_cfg={ |
| 190 | + **train_dataloader_cfg, |
| 191 | + "dataset": { |
| 192 | + "name": "VtuDataset", |
| 193 | + "file_path": "data/sample_points/top_txyz.vtu", |
| 194 | + "input_keys": model.input_keys, |
| 195 | + "label_keys": ("u", "v", "w"), |
| 196 | + "labels": {"u": 0.1, "v": 0, "w": 0}, |
| 197 | + "transforms": [norm_cfg], |
| 198 | + }, |
| 199 | + "batch_size": batchsize_top, |
| 200 | + }, |
| 201 | + loss=ppsci.loss.MSELoss("mean", 2), |
| 202 | + name="BC_TOP", |
| 203 | + ) |
| 204 | + |
| 205 | + bc_bottom = ppsci.constraint.SupervisedConstraint( |
| 206 | + dataloader_cfg={ |
| 207 | + **train_dataloader_cfg, |
| 208 | + "dataset": { |
| 209 | + "name": "VtuDataset", |
| 210 | + "file_path": "data/sample_points/bottom_txyz.vtu", |
| 211 | + "input_keys": model.input_keys, |
| 212 | + "label_keys": ("u", "v", "w"), |
| 213 | + "labels": {"u": 0.1, "v": 0, "w": 0}, |
| 214 | + "transforms": [norm_cfg], |
| 215 | + }, |
| 216 | + "batch_size": batchsize_bottom, |
| 217 | + }, |
| 218 | + loss=ppsci.loss.MSELoss("mean", 2), |
| 219 | + name="BC_BOTTOM", |
| 220 | + ) |
| 221 | + ic = ppsci.constraint.SupervisedConstraint( |
| 222 | + dataloader_cfg={ |
| 223 | + **train_dataloader_cfg, |
| 224 | + "dataset": { |
| 225 | + "name": "VtuDataset", |
| 226 | + "file_path": ref_file, |
| 227 | + "input_keys": model.input_keys, |
| 228 | + "label_keys": ("u", "v", "w"), |
| 229 | + "time_step": TIME_STEP, |
| 230 | + "time_index": (0,), |
| 231 | + "transforms": [norm_cfg], |
| 232 | + }, |
| 233 | + "batch_size": batchsize_ic, |
| 234 | + }, |
| 235 | + loss=ppsci.loss.MSELoss("mean", 5), |
| 236 | + name="IC", |
| 237 | + ) |
| 238 | + sup = ppsci.constraint.SupervisedConstraint( |
| 239 | + dataloader_cfg={ |
| 240 | + **train_dataloader_cfg, |
| 241 | + "dataset": { |
| 242 | + "name": "VtuDataset", |
| 243 | + "file_path": "data/sup_data/supervised_", |
| 244 | + "input_keys": model.input_keys, |
| 245 | + "label_keys": ("u", "v", "w"), |
| 246 | + "time_step": TIME_STEP, |
| 247 | + "time_index": time_index, |
| 248 | + "transforms": (norm_cfg,), |
| 249 | + }, |
| 250 | + "batch_size": batchsize_supervised, |
| 251 | + }, |
| 252 | + loss=ppsci.loss.MSELoss("mean", 10), |
| 253 | + name="SUP", |
| 254 | + ) |
| 255 | + # wrap constraints together |
| 256 | + constraint = { |
| 257 | + pde_constraint.name: pde_constraint, |
| 258 | + bc_inlet.name: bc_inlet, |
| 259 | + bc_cylinder.name: bc_cylinder, |
| 260 | + bc_outlet.name: bc_outlet, |
| 261 | + bc_top.name: bc_top, |
| 262 | + bc_bottom.name: bc_bottom, |
| 263 | + ic.name: ic, |
| 264 | + sup.name: sup, |
| 265 | + } |
| 266 | + |
| 267 | + # set training hyper-parameters |
| 268 | + epochs = 400000 |
| 269 | + lr_scheduler = ppsci.optimizer.lr_scheduler.Cosine( |
| 270 | + epochs=epochs, |
| 271 | + iters_per_epoch=1, |
| 272 | + learning_rate=0.001, |
| 273 | + warmup_epoch=int(epochs * 0.125), |
| 274 | + )() |
| 275 | + |
| 276 | + # set optimizer |
| 277 | + optimizer = ppsci.optimizer.Adam(learning_rate=lr_scheduler)((model,)) |
| 278 | + |
| 279 | + # Read validation reference for time step : 0, 99 |
| 280 | + lbm_0_input, lbm_0_label = reader.load_vtk_file( |
| 281 | + ref_file, TIME_STEP, (0,), model.input_keys, model.output_keys |
| 282 | + ) |
| 283 | + lbm_0_dict = {**normalize(lbm_0_input), **normalize(lbm_0_label)} |
| 284 | + |
| 285 | + # set visualizer(optional) |
| 286 | + eval_dataloader_cfg = { |
| 287 | + "sampler": { |
| 288 | + "name": "BatchSampler", |
| 289 | + "shuffle": False, |
| 290 | + "drop_last": False, |
| 291 | + }, |
| 292 | + "num_workers": 0, |
| 293 | + } |
| 294 | + validator = { |
| 295 | + "Residual": ppsci.validate.SupervisedValidator( |
| 296 | + dataloader_cfg={ |
| 297 | + **eval_dataloader_cfg, |
| 298 | + "dataset": { |
| 299 | + "name": "VtuDataset", |
| 300 | + "file_path": ref_file, |
| 301 | + "input_keys": model.input_keys, |
| 302 | + "label_keys": ("u", "v", "w"), |
| 303 | + "time_step": TIME_STEP, |
| 304 | + "time_index": (0,), |
| 305 | + "transforms": [norm_cfg], |
| 306 | + }, |
| 307 | + "total_size": len(next(iter(lbm_0_dict.values()))), |
| 308 | + "batch_size": 1024, |
| 309 | + }, |
| 310 | + loss=ppsci.loss.MSELoss("mean"), |
| 311 | + metric={"MSE": ppsci.metric.MSE()}, |
| 312 | + name="Residual", |
| 313 | + ), |
| 314 | + } |
| 315 | + |
| 316 | + # set visualizer(optional) |
| 317 | + onestep_input, _ = reader.load_vtk_file(ref_file, 0, [0], model.input_keys, ()) |
| 318 | + data_len_for_onestep = len(next(iter(onestep_input.values()))) |
| 319 | + input_dict = { |
| 320 | + "t": np.concatenate( |
| 321 | + [np.full((data_len_for_onestep, 1), t, "float32") for t in time_tmp], axis=0 |
| 322 | + ), |
| 323 | + "x": np.tile(onestep_input["x"], (len(time_tmp), 1)), |
| 324 | + "y": np.tile(onestep_input["y"], (len(time_tmp), 1)), |
| 325 | + "z": np.tile(onestep_input["z"], (len(time_tmp), 1)), |
| 326 | + } |
| 327 | + input_dict = normalize(input_dict) |
| 328 | + _, label = reader.load_vtk_file( |
| 329 | + ref_file, TIME_STEP, time_list, model.input_keys, model.output_keys |
| 330 | + ) |
| 331 | + |
| 332 | + denormalize = transform.Scale(norm_factor) |
| 333 | + visualizer = { |
| 334 | + "visulzie_uvwp": ppsci.visualize.Visualizer3D( |
| 335 | + input_dict, |
| 336 | + { |
| 337 | + "u": lambda out: out["u"] * norm_factor["u"], |
| 338 | + "v": lambda out: out["v"] * norm_factor["v"], |
| 339 | + "w": lambda out: out["w"] * norm_factor["w"], |
| 340 | + "p": lambda out: out["p"] * norm_factor["p"], |
| 341 | + }, |
| 342 | + 600000, |
| 343 | + label, |
| 344 | + time_list, |
| 345 | + len(time_list), |
| 346 | + "result_uvwp", |
| 347 | + ) |
| 348 | + } |
| 349 | + |
| 350 | + # initialize solver |
| 351 | + solver = ppsci.solver.Solver( |
| 352 | + model, |
| 353 | + constraint, |
| 354 | + output_dir, |
| 355 | + optimizer, |
| 356 | + lr_scheduler, |
| 357 | + epochs, |
| 358 | + 1, |
| 359 | + save_freq=1000, |
| 360 | + eval_during_train=False, |
| 361 | + eval_freq=1000, |
| 362 | + equation=equation, |
| 363 | + geom=None, |
| 364 | + validator=validator, |
| 365 | + ) |
| 366 | + # train model |
| 367 | + solver.train() |
0 commit comments