|
| 1 | +# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from functools import partial |
| 16 | +from typing import Tuple |
| 17 | + |
| 18 | +import h5py |
| 19 | +import numpy as np |
| 20 | +import paddle |
| 21 | +import paddle.distributed as dist |
| 22 | + |
| 23 | +import examples.fourcastnet.utils as fourcast_utils |
| 24 | +import ppsci |
| 25 | +from ppsci.utils import config |
| 26 | +from ppsci.utils import logger |
| 27 | + |
| 28 | + |
| 29 | +def get_vis_datas( |
| 30 | + wind_file_path: str, |
| 31 | + file_path: str, |
| 32 | + date_strings: Tuple[str, ...], |
| 33 | + num_timestamps: int, |
| 34 | + vars_channel: Tuple[int, ...], |
| 35 | + img_h: int, |
| 36 | + data_mean: np.ndarray, |
| 37 | + data_std: np.ndarray, |
| 38 | +): |
| 39 | + __wind_file = h5py.File(wind_file_path, "r")["fields"] |
| 40 | + _file = h5py.File(file_path, "r")["tp"] |
| 41 | + wind_data = [] |
| 42 | + data = [] |
| 43 | + for date_str in date_strings: |
| 44 | + hours_since_jan_01_epoch = fourcast_utils.date_to_hours(date_str) |
| 45 | + ic = int(hours_since_jan_01_epoch / 6) |
| 46 | + wind_data.append(__wind_file[ic, vars_channel, 0:img_h]) |
| 47 | + data.append(_file[ic + 1 : ic + num_timestamps + 1, 0:img_h]) |
| 48 | + wind_data = np.asarray(wind_data) |
| 49 | + data = np.asarray(data) |
| 50 | + |
| 51 | + vis_datas = {"input": (wind_data - data_mean) / data_std} |
| 52 | + for t in range(num_timestamps): |
| 53 | + hour = (t + 1) * 6 |
| 54 | + data_t = data[:, t] |
| 55 | + vis_datas[f"target_{hour}h"] = np.asarray(data_t) |
| 56 | + return vis_datas |
| 57 | + |
| 58 | + |
| 59 | +if __name__ == "__main__": |
| 60 | + args = config.parse_args() |
| 61 | + # set random seed for reproducibility |
| 62 | + ppsci.utils.set_random_seed(1024) |
| 63 | + # Initialize distributed environment |
| 64 | + dist.init_parallel_env() |
| 65 | + |
| 66 | + # set wind dataset path |
| 67 | + wind_train_file_path = "./datasets/era5/train" |
| 68 | + wind_valid_file_path = "./datasets/era5/test" |
| 69 | + wind_test_file_path = "./datasets/era5/out_of_sample/2018.h5" |
| 70 | + wind_mean_path = "./datasets/era5/stat/global_means.npy" |
| 71 | + wind_std_path = "./datasets/era5/stat/global_stds.npy" |
| 72 | + wind_time_mean_path = "./datasets/era5/stat/time_means.npy" |
| 73 | + # set dataset path |
| 74 | + train_file_path = "./datasets/era5/precip/train" |
| 75 | + valid_file_path = "./datasets/era5/precip/test" |
| 76 | + test_file_path = "./datasets/era5/precip/out_of_sample/2018.h5" |
| 77 | + time_mean_path = "./datasets/era5/stat/precip/time_means.npy" |
| 78 | + |
| 79 | + # set training hyper-parameters |
| 80 | + input_keys = ("input",) |
| 81 | + output_keys = ("output",) |
| 82 | + img_h, img_w = 720, 1440 |
| 83 | + epochs = 25 if not args.epochs else args.epochs |
| 84 | + # FourCastNet use 20 atmospheric variable,their index in the dataset is from 0 to 19. |
| 85 | + # The variable name is 'u10', 'v10', 't2m', 'sp', 'msl', 't850', 'u1000', 'v1000', 'z000', |
| 86 | + # 'u850', 'v850', 'z850', 'u500', 'v500', 'z500', 't500', 'z50', 'r500', 'r850', 'tcwv'. |
| 87 | + # You can obtain detailed information about each variable from |
| 88 | + # https://cds.climate.copernicus.eu/cdsapp#!/search?text=era5&type=dataset |
| 89 | + vars_channel = list(range(20)) |
| 90 | + # set output directory |
| 91 | + output_dir = ( |
| 92 | + "./output/fourcastnet/precip" if not args.output_dir else args.output_dir |
| 93 | + ) |
| 94 | + wind_model_path = "./output/fourcastnet/finetune/checkpoints/latest" |
| 95 | + pretrained_model_path = "/root/ssd3/zhangzhimin04/workspaces/FourCastNet_Paddle/model_precip/00/training_checkpoints/best_ckpt" |
| 96 | + # initialize logger |
| 97 | + logger.init_logger("ppsci", f"{output_dir}/train.log", "info") |
| 98 | + |
| 99 | + wind_data_mean, wind_data_std = fourcast_utils.get_mean_std( |
| 100 | + wind_mean_path, wind_std_path, vars_channel |
| 101 | + ) |
| 102 | + data_time_mean = fourcast_utils.get_time_mean(time_mean_path, img_h, img_w) |
| 103 | + |
| 104 | + # set train transforms |
| 105 | + transforms = [ |
| 106 | + {"SqueezeData": {}}, |
| 107 | + {"CropData": {"xmin": (0, 0), "xmax": (img_h, img_w)}}, |
| 108 | + { |
| 109 | + "Normalize": { |
| 110 | + "mean": wind_data_mean, |
| 111 | + "std": wind_data_std, |
| 112 | + "apply_keys": ("input",), |
| 113 | + } |
| 114 | + }, |
| 115 | + {"Log1p": {"scale": 1e-5, "apply_keys": ("label",)}}, |
| 116 | + ] |
| 117 | + |
| 118 | + # set train dataloader config |
| 119 | + train_dataloader_cfg = { |
| 120 | + "dataset": { |
| 121 | + "name": "ERA5Dataset", |
| 122 | + "file_path": wind_train_file_path, |
| 123 | + "input_keys": input_keys, |
| 124 | + "label_keys": output_keys, |
| 125 | + "vars_channel": vars_channel, |
| 126 | + "precip_file_path": train_file_path, |
| 127 | + "transforms": transforms, |
| 128 | + }, |
| 129 | + "sampler": { |
| 130 | + "name": "BatchSampler", |
| 131 | + "drop_last": True, |
| 132 | + "shuffle": True, |
| 133 | + }, |
| 134 | + "batch_size": 1, |
| 135 | + "num_workers": 8, |
| 136 | + } |
| 137 | + # set constraint |
| 138 | + sup_constraint = ppsci.constraint.SupervisedConstraint( |
| 139 | + train_dataloader_cfg, |
| 140 | + ppsci.loss.L2RelLoss(), |
| 141 | + name="Sup", |
| 142 | + ) |
| 143 | + constraint = {sup_constraint.name: sup_constraint} |
| 144 | + |
| 145 | + # set iters_per_epoch by dataloader length |
| 146 | + iters_per_epoch = len(sup_constraint.data_loader) |
| 147 | + |
| 148 | + # set eval dataloader config |
| 149 | + eval_dataloader_cfg = { |
| 150 | + "dataset": { |
| 151 | + "name": "ERA5Dataset", |
| 152 | + "file_path": wind_valid_file_path, |
| 153 | + "input_keys": input_keys, |
| 154 | + "label_keys": output_keys, |
| 155 | + "vars_channel": vars_channel, |
| 156 | + "precip_file_path": valid_file_path, |
| 157 | + "transforms": transforms, |
| 158 | + "training": False, |
| 159 | + }, |
| 160 | + "sampler": { |
| 161 | + "name": "BatchSampler", |
| 162 | + "drop_last": False, |
| 163 | + "shuffle": False, |
| 164 | + }, |
| 165 | + "batch_size": 1, |
| 166 | + } |
| 167 | + |
| 168 | + # set metirc |
| 169 | + metric = { |
| 170 | + "MAE": ppsci.metric.MAE(keep_batch=True), |
| 171 | + "LatitudeWeightedRMSE": ppsci.metric.LatitudeWeightedRMSE( |
| 172 | + num_lat=img_h, keep_batch=True, unlog=True |
| 173 | + ), |
| 174 | + "LatitudeWeightedACC": ppsci.metric.LatitudeWeightedACC( |
| 175 | + num_lat=img_h, mean=data_time_mean, keep_batch=True, unlog=True |
| 176 | + ), |
| 177 | + } |
| 178 | + |
| 179 | + # set validator |
| 180 | + sup_validator = ppsci.validate.SupervisedValidator( |
| 181 | + eval_dataloader_cfg, |
| 182 | + ppsci.loss.L2RelLoss(), |
| 183 | + metric=metric, |
| 184 | + name="Sup_Validator", |
| 185 | + ) |
| 186 | + validator = {sup_validator.name: sup_validator} |
| 187 | + |
| 188 | + # set model |
| 189 | + wind_model = ppsci.arch.AFNONet(input_keys, output_keys) |
| 190 | + ppsci.utils.save_load.load_pretrain(wind_model, path=wind_model_path) |
| 191 | + model = ppsci.arch.PrecipNet(input_keys, output_keys, wind_model=wind_model) |
| 192 | + |
| 193 | + # init optimizer and lr scheduler |
| 194 | + lr_scheduler = ppsci.optimizer.lr_scheduler.Cosine( |
| 195 | + epochs, |
| 196 | + iters_per_epoch, |
| 197 | + 5e-4, |
| 198 | + by_epoch=True, |
| 199 | + )() |
| 200 | + optimizer = ppsci.optimizer.Adam(lr_scheduler)((model,)) |
| 201 | + |
| 202 | + # initialize solver |
| 203 | + solver = ppsci.solver.Solver( |
| 204 | + model, |
| 205 | + constraint, |
| 206 | + output_dir, |
| 207 | + optimizer, |
| 208 | + lr_scheduler, |
| 209 | + epochs, |
| 210 | + iters_per_epoch, |
| 211 | + eval_during_train=True, |
| 212 | + log_freq=1, |
| 213 | + validator=validator, |
| 214 | + compute_metric_by_batch=True, |
| 215 | + eval_with_no_grad=True, |
| 216 | + ) |
| 217 | + # train model |
| 218 | + solver.train() |
| 219 | + # evaluate after finished training |
| 220 | + solver.eval() |
| 221 | + |
| 222 | + # set testing hyper-parameters |
| 223 | + num_timestamps = 6 |
| 224 | + output_keys = tuple([f"output_{i}" for i in range(num_timestamps)]) |
| 225 | + |
| 226 | + # set model for testing |
| 227 | + model = ppsci.arch.PrecipNet( |
| 228 | + input_keys, output_keys, num_timestamps=num_timestamps, wind_model=wind_model |
| 229 | + ) |
| 230 | + |
| 231 | + # update eval dataloader config |
| 232 | + eval_dataloader_cfg["dataset"].update( |
| 233 | + { |
| 234 | + "file_path": wind_test_file_path, |
| 235 | + "label_keys": output_keys, |
| 236 | + "precip_file_path": test_file_path, |
| 237 | + "num_label_timestamps": num_timestamps, |
| 238 | + "stride": 8, |
| 239 | + } |
| 240 | + ) |
| 241 | + |
| 242 | + # set validator for testing |
| 243 | + sup_validator = ppsci.validate.SupervisedValidator( |
| 244 | + eval_dataloader_cfg, |
| 245 | + ppsci.loss.L2RelLoss(), |
| 246 | + metric=metric, |
| 247 | + name="Sup_Validator", |
| 248 | + ) |
| 249 | + validator = {sup_validator.name: sup_validator} |
| 250 | + |
| 251 | + # set set visualizer datas |
| 252 | + date_strings = ("2018-04-04 00:00:00",) |
| 253 | + vis_datas = get_vis_datas( |
| 254 | + wind_test_file_path, |
| 255 | + test_file_path, |
| 256 | + date_strings, |
| 257 | + num_timestamps, |
| 258 | + vars_channel, |
| 259 | + img_h, |
| 260 | + wind_data_mean, |
| 261 | + wind_data_std, |
| 262 | + ) |
| 263 | + |
| 264 | + def output_precip_func(d, var_name): |
| 265 | + output = 1e-2 * paddle.expm1(d[var_name][0]) |
| 266 | + return output |
| 267 | + |
| 268 | + visu_output_expr = {} |
| 269 | + for i in range(num_timestamps): |
| 270 | + hour = (i + 1) * 6 |
| 271 | + visu_output_expr[f"output_{hour}h"] = partial( |
| 272 | + output_precip_func, |
| 273 | + var_name=f"output_{i}", |
| 274 | + ) |
| 275 | + visu_output_expr[f"target_{hour}h"] = ( |
| 276 | + lambda d, hour=hour: d[f"target_{hour}h"] * 1000 |
| 277 | + ) |
| 278 | + # set visualizer |
| 279 | + visualizer = { |
| 280 | + "visulize_precip": ppsci.visualize.VisualizerWeather( |
| 281 | + vis_datas, |
| 282 | + visu_output_expr, |
| 283 | + xticks=np.linspace(0, 1439, 13), |
| 284 | + xticklabels=[str(i) for i in range(360, -1, -30)], |
| 285 | + yticks=np.linspace(0, 719, 7), |
| 286 | + yticklabels=[str(i) for i in range(90, -91, -30)], |
| 287 | + vmin=0.001, |
| 288 | + vmax=130, |
| 289 | + colorbar_label="mm", |
| 290 | + log_norm=True, |
| 291 | + batch_size=1, |
| 292 | + num_timestamps=num_timestamps, |
| 293 | + prefix="precip", |
| 294 | + ) |
| 295 | + } |
| 296 | + |
| 297 | + # directly evaluate pretrained model |
| 298 | + logger.init_logger("ppsci", f"{output_dir}/eval.log", "info") |
| 299 | + solver = ppsci.solver.Solver( |
| 300 | + model, |
| 301 | + output_dir=output_dir, |
| 302 | + log_freq=1, |
| 303 | + validator=validator, |
| 304 | + visualizer=visualizer, |
| 305 | + pretrained_model_path=pretrained_model_path, |
| 306 | + compute_metric_by_batch=True, |
| 307 | + eval_with_no_grad=True, |
| 308 | + ) |
| 309 | + solver.eval() |
| 310 | + # visualize prediction from pretrained_model_path |
| 311 | + solver.visualize() |
0 commit comments