We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
2 parents d739ace + d91ea1b commit 543be8fCopy full SHA for 543be8f
paddlescience/network/grad_norm.py
@@ -84,8 +84,8 @@ def get_grad_norm_loss(self, losses):
84
norms = []
85
for i in range(losses.shape[0]):
86
grad = paddle.autograd.grad(losses[i], W, retain_graph=True)
87
- norms.append(paddle.norm(self.loss_weights[i] * grad[0], p=2))
88
- norms = paddle.concat(norms)
+ norms.append(paddle.norm(self.loss_weights[i] * grad[0], p=2).reshape([]))
+ norms = paddle.stack(norms)
89
90
# calculate the inverse train rate
91
loss_ratio = losses.numpy() / self.initial_losses
0 commit comments