|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import argparse |
| 16 | +import json |
| 17 | +import logging |
| 18 | +import math |
| 19 | +import os |
| 20 | +from typing import Tuple |
| 21 | + |
| 22 | +from fastdeploy.model_executor.ops.gpu.deep_gemm.jit_kernels.gemm import \ |
| 23 | + get_smem_config |
| 24 | + |
| 25 | +logger = logging.getLogger(__name__) |
| 26 | +console_handler = logging.StreamHandler() |
| 27 | +logger.addHandler(console_handler) |
| 28 | +logger.setLevel(os.getenv("PRE_COMPILE_LOG_LEVEL", "INFO")) |
| 29 | + |
| 30 | + |
| 31 | +def generate_kn_pairs(model_cfg: dict) -> Tuple[list, list, list]: |
| 32 | + hidden_size = model_cfg["hidden_size"] |
| 33 | + intermediate_size = model_cfg["intermediate_size"] |
| 34 | + moe_intermediate_size = model_cfg["moe_intermediate_size"] |
| 35 | + num_attention_heads = model_cfg["num_attention_heads"] |
| 36 | + num_key_value_heads = model_cfg["num_key_value_heads"] |
| 37 | + head_dim = int(hidden_size / num_attention_heads) |
| 38 | + gemm_kn_pairs = [ |
| 39 | + # Dense normal gemm |
| 40 | + [hidden_size, intermediate_size * 2], |
| 41 | + [intermediate_size, hidden_size], |
| 42 | + [hidden_size, hidden_size], |
| 43 | + [hidden_size, (num_attention_heads + num_key_value_heads * 2) * head_dim], |
| 44 | + ] |
| 45 | + grouped_gemm_contiguous_kn_pairs = [ |
| 46 | + # Moe grouped gemm contiguous |
| 47 | + [hidden_size, moe_intermediate_size * 2], |
| 48 | + [moe_intermediate_size, hidden_size], |
| 49 | + ] |
| 50 | + grouped_gemm_masked_kn_pairs = [ |
| 51 | + # Moe grouped gemm masked |
| 52 | + [hidden_size, moe_intermediate_size * 2], |
| 53 | + [moe_intermediate_size, hidden_size], |
| 54 | + ] |
| 55 | + |
| 56 | + return gemm_kn_pairs, grouped_gemm_contiguous_kn_pairs, grouped_gemm_masked_kn_pairs |
| 57 | + |
| 58 | + |
| 59 | +def generate_json( |
| 60 | + kn_pairs: list, |
| 61 | + moe_num_experts: int, |
| 62 | + output_path: str, |
| 63 | + is_grouped_contiguous: bool = False, |
| 64 | + is_grouped_masked: bool = False, |
| 65 | +): |
| 66 | + if not is_grouped_contiguous: |
| 67 | + BLOCK_MS = [64, 128, 256] |
| 68 | + else: |
| 69 | + BLOCK_MS = [128] |
| 70 | + BLOCK_NS = list(range(16, 129, 8)) + [144, 160] |
| 71 | + TMA_MULTICAST_CONFIGS = [(1, True), (1, False), (2, True), (2, False)] |
| 72 | + counter = 0 |
| 73 | + with open(output_path, "a+", encoding="utf-8") as f: |
| 74 | + for block_m in BLOCK_MS: |
| 75 | + for block_n in BLOCK_NS: |
| 76 | + if 128 % block_n != 0 and 128 // math.gcd(128, block_n) <= 4: |
| 77 | + NUM_STAGES = [4, 3] |
| 78 | + else: |
| 79 | + NUM_STAGES = [8, 7, 6, 5, 4, 3] |
| 80 | + for num_stages in NUM_STAGES: |
| 81 | + for kn_pair in kn_pairs: |
| 82 | + smem_config = get_smem_config( |
| 83 | + num_stages, kn_pair[0], block_m, block_n |
| 84 | + ) |
| 85 | + for tma_multicast_config in TMA_MULTICAST_CONFIGS: |
| 86 | + cfg = { |
| 87 | + "N": kn_pair[1], |
| 88 | + "K": kn_pair[0], |
| 89 | + "BLOCK_M": block_m, |
| 90 | + "BLOCK_N": block_n, |
| 91 | + "SWIZZLE_D_MODE": smem_config[1], |
| 92 | + "BLOCK_N_PADDING": smem_config[2], |
| 93 | + "NUM_STAGES": num_stages, |
| 94 | + "NUM_TMA_MULTICAST": tma_multicast_config[0], |
| 95 | + "IS_TMA_MULTICAST_ON_A": tma_multicast_config[1], |
| 96 | + "IS_GROUPED_CONTIGUOUS": is_grouped_contiguous, |
| 97 | + "IS_GROUPED_MASKED": is_grouped_masked, |
| 98 | + "MOE_NUM_EXPERTS": moe_num_experts, |
| 99 | + } |
| 100 | + f.write(json.dumps(cfg) + "\n") |
| 101 | + counter += 1 |
| 102 | + |
| 103 | + return counter |
| 104 | + |
| 105 | + |
| 106 | +def main(args): |
| 107 | + with open(os.path.join(args.model, "config.json"), "r") as f: |
| 108 | + model_cfg = json.load(f) |
| 109 | + |
| 110 | + gemm_kn_pairs, grouped_gemm_contiguous_kn_pairs, grouped_gemm_masked_kn_pairs = ( |
| 111 | + generate_kn_pairs(model_cfg) |
| 112 | + ) |
| 113 | + num_gemm = generate_json( |
| 114 | + gemm_kn_pairs, |
| 115 | + model_cfg["moe_num_experts"], |
| 116 | + args.output, |
| 117 | + ) |
| 118 | + num_grouped_contiguous = generate_json( |
| 119 | + grouped_gemm_contiguous_kn_pairs, |
| 120 | + model_cfg["moe_num_experts"], |
| 121 | + args.output, |
| 122 | + is_grouped_contiguous=True, |
| 123 | + ) |
| 124 | + num_grouped_masked = generate_json( |
| 125 | + grouped_gemm_masked_kn_pairs, |
| 126 | + model_cfg["moe_num_experts"], |
| 127 | + args.output, |
| 128 | + is_grouped_masked=True, |
| 129 | + ) |
| 130 | + logger.info(f"Configurations generated and saved to {args.output}") |
| 131 | + logger.info(f"Generated {num_gemm} gemm configuration.") |
| 132 | + logger.info( |
| 133 | + f"Generated {num_grouped_contiguous} grouped_gemm_contiguous configuration." |
| 134 | + ) |
| 135 | + logger.info(f"Generated {num_grouped_masked} grouped_gemm_masked configuration.") |
| 136 | + |
| 137 | + |
| 138 | +if __name__ == "__main__": |
| 139 | + parser = argparse.ArgumentParser() |
| 140 | + parser.add_argument( |
| 141 | + "--model", |
| 142 | + type=str, |
| 143 | + required=True, |
| 144 | + ) |
| 145 | + parser.add_argument( |
| 146 | + "--output", |
| 147 | + type=str, |
| 148 | + default="./deep_gemm_pre_compile_config.jsonl", |
| 149 | + ) |
| 150 | + args = parser.parse_args() |
| 151 | + main(args) |
0 commit comments