|
| 1 | +using OptimalTransportNetworks |
| 2 | +import OptimalTransportNetworks as otn |
| 3 | +using LinearAlgebra |
| 4 | +using SparseArrays |
| 5 | +using ForwardDiff # Numeric Solutions |
| 6 | + |
| 7 | +# Model Parameters |
| 8 | +param = init_parameters(labor_mobility = false, K = 10, gamma = 1, beta = 1, verbose = true, |
| 9 | + N = 3, cross_good_congestion = true, nu = 2, rho = 0, duality = true) # , tol = 1e-4) |
| 10 | +# Init network |
| 11 | +map_size = 4 |
| 12 | +if map_size == 11 |
| 13 | + graph = create_graph(param, 11, 11, type = "map") # create a map network of 11x11 nodes located in [0,10]x[0,10] |
| 14 | + # Customize graph |
| 15 | + graph[:Zjn] = fill(0.1, graph[:J], param[:N]) # set most places to low productivity |
| 16 | + Ni = find_node(graph, 6, 6) # Find index of the central node at (6,6) |
| 17 | + graph[:Zjn][Ni, 1] = 2 # central node more productive |
| 18 | + Ni = find_node(graph, 8, 2) |
| 19 | + graph[:Zjn][Ni, 2] = 1 |
| 20 | + Ni = find_node(graph, 1, 10) |
| 21 | + graph[:Zjn][Ni, 3] = 1 |
| 22 | +end |
| 23 | +if map_size == 4 |
| 24 | + graph = create_graph(param, 4, 4, type = "map") |
| 25 | + # Customize graph |
| 26 | + graph[:Zjn] = fill(0.1, graph[:J], param[:N]) |
| 27 | + Ni = find_node(graph, 2, 3) |
| 28 | + graph[:Zjn][Ni, 1] = 2 |
| 29 | + Ni = find_node(graph, 2, 1) |
| 30 | + graph[:Zjn][Ni, 2] = 1 |
| 31 | + Ni = find_node(graph, 4, 4) |
| 32 | + graph[:Zjn][Ni, 3] = 1 |
| 33 | +end |
| 34 | +if map_size == 3 |
| 35 | + graph = create_graph(param, 3, 3, type = "map") |
| 36 | + # Customize graph |
| 37 | + graph[:Zjn] = fill(0.1, graph[:J], param[:N]) |
| 38 | + Ni = find_node(graph, 2, 3) |
| 39 | + graph[:Zjn][Ni, 1] = 2 |
| 40 | + Ni = find_node(graph, 2, 1) |
| 41 | + graph[:Zjn][Ni, 2] = 1 |
| 42 | + Ni = find_node(graph, 3, 3) |
| 43 | + graph[:Zjn][Ni, 3] = 1 |
| 44 | +end |
| 45 | + |
| 46 | +# Get Model |
| 47 | +# param[:optimizer_attr] = Dict(:hsllib => "/usr/local/lib/libhsl.dylib", :linear_solver => "ma57") |
| 48 | +param[:duality] = true # Change to see dual/non-dual models |
| 49 | + |
| 50 | +RN = param[:N] > 1 ? range(1, 2, length=param[:N])' : 1 |
| 51 | +x0 = vec(range(1, 2, length=graph[:J]) * RN) |
| 52 | + |
| 53 | +edges = otn.represent_edges(otn.dict_to_namedtuple(graph)) |
| 54 | +I0 = Float64.(graph[:adjacency]) |
| 55 | +I0 *= param[:K] / sum(graph[:delta_i] .* I0) # |
| 56 | +# I0 = rescale_network!(param, graph, I0, Il, Iu) |
| 57 | + |
| 58 | +# -------------- |
| 59 | +# INITIALIZATION |
| 60 | + |
| 61 | +auxdata = otn.create_auxdata(otn.dict_to_namedtuple(param), otn.dict_to_namedtuple(graph), edges, I0) |
| 62 | + |
| 63 | +# Recover allocation |
| 64 | +function recover_allocation_duality(x, auxdata) |
| 65 | + param = auxdata.param |
| 66 | + graph = auxdata.graph |
| 67 | + omegaj = graph.omegaj |
| 68 | + kappa = auxdata.kappa |
| 69 | + Lj = graph.Lj |
| 70 | + hj1malpha = (graph.hj / (1-param.alpha)) .^ (1-param.alpha) |
| 71 | + |
| 72 | + # Extract price vectors |
| 73 | + Pjn = reshape(x, (graph.J, param.N)) |
| 74 | + PCj = sum(Pjn .^ (1 - param.sigma), dims=2) .^ (1 / (1 - param.sigma)) |
| 75 | + |
| 76 | + # Calculate labor allocation |
| 77 | + if param.a < 1 |
| 78 | + temp = (Pjn .* graph.Zjn) .^ (1 / (1 - param.a)) |
| 79 | + Ljn = temp .* (Lj ./ sum(temp, dims=2)) |
| 80 | + Ljn[graph.Zjn .== 0] .= 0 |
| 81 | + else |
| 82 | + _, max_id = findmax(Pjn .* graph.Zjn, dims=2) |
| 83 | + Ljn = zeros(graph.J, param.N) |
| 84 | + Ljn[CartesianIndex.(1:graph.J, getindex.(max_id, 2))] .= Lj |
| 85 | + end |
| 86 | + Yjn = graph.Zjn .* (Ljn .^ param.a) |
| 87 | + |
| 88 | + # Calculate consumption |
| 89 | + cj = param.alpha * (PCj ./ omegaj) .^ |
| 90 | + (-1 / (1 + param.alpha * (param.rho - 1))) .* |
| 91 | + hj1malpha .^ (-(param.rho - 1)/(1 + param.alpha * (param.rho - 1))) |
| 92 | + |
| 93 | + # This is = PCj |
| 94 | + zeta = omegaj .* ((cj / param.alpha) .^ param.alpha .* hj1malpha) .^ (-param.rho) .* |
| 95 | + ((cj / param.alpha) .^ (param.alpha - 1) .* hj1malpha) |
| 96 | + |
| 97 | + cjn = (Pjn ./ zeta) .^ (-param.sigma) .* cj |
| 98 | + Cj = cj .* Lj |
| 99 | + Cjn = cjn .* Lj |
| 100 | + |
| 101 | + # Calculate the flows Qjkn |
| 102 | + Qjkn = fill(zero(eltype(Pjn)), graph.J, graph.J, param.N) |
| 103 | + nadj = findall(.!graph.adjacency) |
| 104 | + @inbounds for n in 1:param.N |
| 105 | + Lambda = repeat(Pjn[:, n], 1, graph.J) |
| 106 | + # Note: max(P^n_k/P^n_j-1, 0) = max(P^n_k-P^n_j, 0)/P^n_j |
| 107 | + LL = max.(Lambda' - Lambda, 0) # P^n_k - P^n_j |
| 108 | + LL[nadj] .= 0 |
| 109 | + Qjkn[:, :, n] = (1 / (1 + param.beta) * kappa .* LL ./ Lambda) .^ (1 / param.beta) |
| 110 | + end |
| 111 | + |
| 112 | + return (Pjn=Pjn, PCj=PCj, Ljn=Ljn, Yjn=Yjn, cj=cj, cjn=cjn, Cj=Cj, Cjn=Cjn, Qjkn=Qjkn) |
| 113 | +end |
| 114 | + |
| 115 | + |
| 116 | +# Objective function |
| 117 | +function objective_duality(x, auxdata) |
| 118 | + param = auxdata.param |
| 119 | + graph = auxdata.graph |
| 120 | + |
| 121 | + res = recover_allocation_duality(x, auxdata) |
| 122 | + Pjn = reshape(x, (graph.J, param.N)) |
| 123 | + |
| 124 | + # Compute transportation cost |
| 125 | + cost = res.Qjkn .^ (1 + param.beta) ./ repeat(auxdata.kappa, 1, 1, param.N) |
| 126 | + cost[res.Qjkn .== 0] .= 0 # Deal with cases Qjkn=kappa=0 |
| 127 | + |
| 128 | + # Compute constraint |
| 129 | + cons = res.cjn .* graph.Lj + dropdims(sum(res.Qjkn + cost - permutedims(res.Qjkn, (2, 1, 3)), dims=2), dims = 2) - res.Yjn |
| 130 | + cons = sum(Pjn .* cons, dims=2) |
| 131 | + |
| 132 | + # Compute objective value |
| 133 | + f = sum(graph.omegaj .* graph.Lj .* param.u.(res.cj, graph.hj)) - sum(cons) |
| 134 | + return f # Negative objective because Ipopt minimizes? |
| 135 | +end |
| 136 | + |
| 137 | + |
| 138 | +function objective(x) |
| 139 | + return objective_duality(x, auxdata) |
| 140 | +end |
| 141 | + |
| 142 | +objective(x0) |
| 143 | + |
| 144 | +# Gradient function = negative constraint |
| 145 | +function gradient_duality(x::Vector{Float64}, auxdata) |
| 146 | + param = auxdata.param |
| 147 | + graph = auxdata.graph |
| 148 | + kappa = auxdata.kappa |
| 149 | + |
| 150 | + res = recover_allocation_duality(x, auxdata) |
| 151 | + |
| 152 | + # Compute transportation cost |
| 153 | + cost = res.Qjkn .^ (1 + param.beta) ./ repeat(kappa, 1, 1, param.N) |
| 154 | + cost[res.Qjkn .== 0] .= 0 # Deal with cases Qjkn=kappa=0 |
| 155 | + |
| 156 | + # Compute constraint |
| 157 | + cons = res.cjn .* graph.Lj + dropdims(sum(res.Qjkn + cost - permutedims(res.Qjkn, (2, 1, 3)), dims=2), dims = 2) - res.Yjn |
| 158 | + |
| 159 | + return -cons[:] # Flatten the array and store in grad_f |
| 160 | +end |
| 161 | + |
| 162 | + |
| 163 | +gradient_duality(x0, auxdata) |
| 164 | + |
| 165 | +# Numeric Solutions |
| 166 | +ForwardDiff.gradient(objective, x0) |
| 167 | + |
| 168 | +# Difference |
| 169 | +gradient_duality(x0, auxdata) ./ ForwardDiff.gradient(objective, x0) |
| 170 | + |
| 171 | + |
| 172 | +# Now the Hessian |
| 173 | +function hessian_structure_duality(auxdata) |
| 174 | + graph = auxdata.graph |
| 175 | + param = auxdata.param |
| 176 | + |
| 177 | + # Create the Hessian structure |
| 178 | + H_structure = tril(repeat(sparse(I(graph.J)), param.N, param.N) + kron(sparse(I(param.N)), sparse(graph.adjacency))) |
| 179 | + |
| 180 | + # Get the row and column indices of non-zero elements |
| 181 | + rows, cols, _ = findnz(H_structure) |
| 182 | + return rows, cols |
| 183 | +end |
| 184 | + |
| 185 | +function hessian_duality( |
| 186 | + x::Vector{Float64}, |
| 187 | + rows::Vector{Int64}, |
| 188 | + cols::Vector{Int64}, |
| 189 | + values::Vector{Float64}, |
| 190 | + auxdata |
| 191 | +) |
| 192 | + # function hessian(x, auxdata, obj_factor, lambda) |
| 193 | + param = auxdata.param |
| 194 | + graph = auxdata.graph |
| 195 | + nodes = graph.nodes |
| 196 | + beta = param.beta |
| 197 | + m1dbeta = -1 / beta |
| 198 | + sigma = param.sigma |
| 199 | + a = param.a |
| 200 | + adam1 = a / (a - 1) |
| 201 | + J = graph.J |
| 202 | + Zjn = graph.Zjn |
| 203 | + Lj = graph.Lj |
| 204 | + omegaj = graph.omegaj |
| 205 | + |
| 206 | + # Precompute elements |
| 207 | + res = recover_allocation_duality(x, auxdata) |
| 208 | + Pjn = res.Pjn |
| 209 | + PCj = res.PCj |
| 210 | + Qjkn = res.Qjkn |
| 211 | + |
| 212 | + # Prepare computation of production function |
| 213 | + if a != 1 |
| 214 | + psi = (Pjn .* Zjn) .^ (1 / (1 - a)) |
| 215 | + Psi = sum(psi, dims=2) |
| 216 | + end |
| 217 | + |
| 218 | + # Now the big loop over the hessian terms to compute |
| 219 | + ind = 0 |
| 220 | + |
| 221 | + # https://stackoverflow.com/questions/38901275/inbounds-propagation-rules-in-julia |
| 222 | + @inbounds for (jdnd, jn) in zip(rows, cols) |
| 223 | + ind += 1 |
| 224 | + # First get the indices of the element and the respective derivative |
| 225 | + j = (jn-1) % J + 1 |
| 226 | + n = Int(ceil(jn / J)) |
| 227 | + jd = (jdnd-1) % J + 1 |
| 228 | + nd = Int(ceil(jdnd / J)) |
| 229 | + # Get neighbors k |
| 230 | + neighbors = nodes[j] |
| 231 | + |
| 232 | + # Stores the derivative term |
| 233 | + term = 0.0 |
| 234 | + |
| 235 | + # Starting with C^n_j = CG, derivative: C'G + CG' |
| 236 | + if jd == j # 0 for P^n_k |
| 237 | + Cprime = Lj[j]/omegaj[j] * (PCj[j] / Pjn[j, nd])^sigma / param.usecond(res.cj[j], graph.hj[j]) # param.uprimeinvprime(PCj[j]/omegaj[j], graph.hj[j]) |
| 238 | + G = (Pjn[j, n] / PCj[j])^(-sigma) |
| 239 | + Gprime = sigma * (Pjn[j, n] * Pjn[j, nd])^(-sigma) * PCj[j]^(2*sigma-1) |
| 240 | + if nd == n |
| 241 | + Gprime -= sigma / PCj[j] * G^((sigma+1)/sigma) |
| 242 | + end |
| 243 | + term += Cprime * G + res.Cj[j] * Gprime |
| 244 | + end |
| 245 | + |
| 246 | + # Now terms sum_k((Q^n_{jk} + K_{jk}(Q^n_{jk})^(1+beta)) - Q^n_{kj}) |
| 247 | + if nd == n |
| 248 | + for k in neighbors |
| 249 | + if jd == j # P^x_j |
| 250 | + diff = Pjn[k, n] - Pjn[j, n] |
| 251 | + if diff >= 0 # Flows in the direction of k |
| 252 | + term += m1dbeta * (Pjn[k, n] / Pjn[j, n])^2 * Qjkn[j, k, n] / diff |
| 253 | + else # Flows in the direction of j |
| 254 | + term += m1dbeta * Qjkn[k, j, n] / abs(diff) |
| 255 | + end |
| 256 | + elseif jd == k # P^x_k |
| 257 | + diff = Pjn[k, n] - Pjn[j, n] |
| 258 | + if diff >= 0 # Flows in the direction of k |
| 259 | + term -= m1dbeta * Pjn[k, n] / Pjn[j, n] * Qjkn[j, k, n] / diff |
| 260 | + else # Flows in the direction of j |
| 261 | + term -= m1dbeta * Pjn[j, n] / Pjn[k, n] * Qjkn[k, j, n] / abs(diff) |
| 262 | + end |
| 263 | + end |
| 264 | + end # End of k loop |
| 265 | + end |
| 266 | + |
| 267 | + # Finally: need to compute production function (X) |
| 268 | + if a != 1 && jd == j |
| 269 | + X = adam1 * Zjn[j, n] * Zjn[j, nd] * (psi[j, n] * psi[j, nd])^a / Psi[j]^(a+1) * Lj[j]^a |
| 270 | + if nd == n |
| 271 | + X *= 1 - Psi[j] / psi[j, n] |
| 272 | + end |
| 273 | + term -= X |
| 274 | + end |
| 275 | + |
| 276 | + # Assign result |
| 277 | + values[ind] = -term |
| 278 | + end |
| 279 | + return values |
| 280 | +end |
| 281 | + |
| 282 | +rows, cols = hessian_structure_duality(auxdata) |
| 283 | +cind = CartesianIndex.(rows, cols) |
| 284 | +values = zeros(length(cind)) |
| 285 | + |
| 286 | +hessian_duality(x0, rows, cols, values, auxdata) |
| 287 | +ForwardDiff.hessian(objective, x0)[cind] |
| 288 | + |
| 289 | +# findnz(sparse(ForwardDiff.hessian(objective, x0)))[1] |
| 290 | +# extrema(abs.(findnz(sparse(ForwardDiff.hessian(objective, x0)))[3])) |
| 291 | +# sum(abs.(ForwardDiff.hessian(objective, x0)) .> 0.01) |
| 292 | + |
| 293 | +ForwardDiff.hessian(objective, x0) |
| 294 | +H = zeros(length(x0), length(x0)) |
| 295 | +H[cind] = hessian_duality(x0, rows, cols, values, auxdata) |
| 296 | +H |
| 297 | + |
| 298 | +# Ratios |
| 299 | +hessian_duality(x0, rows, cols, values, auxdata) ./ ForwardDiff.hessian(objective, x0)[cind] |
| 300 | +extrema(hessian_duality(x0, rows, cols, values, auxdata) ./ ForwardDiff.hessian(objective, x0)[cind]) |
| 301 | + |
| 302 | + |
| 303 | + |
| 304 | + |
| 305 | + |
| 306 | + |
0 commit comments