|
2 | 2 |
|
3 | 3 | # <img width="60" alt="image" src="https://github.com/OpenGVLab/InternVL/assets/47669167/7037290e-f474-4d11-b90f-1d8316087bf8"> InternVL Family: Closing the Gap to Commercial Multimodal Models with Open-Source Suites —— A Pioneering Open-Source Alternative to GPT-4o
|
4 | 4 |
|
5 |
| -[\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🤔 FAQs\]](https://internvl.readthedocs.io/en/latest/tutorials/faqs.html) [\[🚀 InternVL2 Blog\]](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[📖 Document\]](https://internvl.readthedocs.io/en/latest/) [\[🌐 API\]](https://internvl.readthedocs.io/en/latest/get_started/internvl_chat_api.html) [\[🚀 Quick Start\]](#quick-start-with-huggingface) |
| 5 | +[\[🔥 Mini-InternVL\]](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvl) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🤔 FAQs\]](https://internvl.readthedocs.io/en/latest/tutorials/faqs.html) [\[🚀 InternVL2 Blog\]](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[📖 Document\]](https://internvl.readthedocs.io/en/latest/) [\[🌐 API\]](https://internvl.readthedocs.io/en/latest/get_started/internvl_chat_api.html) [\[🚀 Quick Start\]](#quick-start-with-huggingface) |
6 | 6 |
|
7 |
| -[\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759) [\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) |
| 7 | +[\[🔥 Mini-InternVL Report\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759) [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079) |
8 | 8 |
|
9 | 9 | [Switch to the Chinese version (切换至中文版)](/README_zh.md)
|
10 | 10 |
|
|
16 | 16 | </div>
|
17 | 17 |
|
18 | 18 | ## News 🚀🚀🚀
|
19 |
| - |
| 19 | +- `2024/10/21`: We release the Mini-InternVL series, which includes three chat models: __Mini-InternVL-1B__, __Mini-InternVL-2B__ and __Mini-InternVL-4B__. These models achieve impressive performance with minimal size: the 4B model achieves 90% of the performance with just 5% of the model size. For more details, please check our [Project page](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvl) and [Document](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html). |
20 | 20 | - `2024/08/01`: The [Chartmimic](https://chartmimic.github.io/) team evaluated the InternVL2 series models on their benchmark. The InternVL2-26B and 76B models achieved the top two performances among open-source models, with the InternVL2 76B model surpassing GeminiProVision and exhibiting comparable results to Claude-3-opus.
|
21 | 21 | - `2024/08/01`: InternVL2-Pro achieved the SOTA performance among open-source models on the [CharXiv](https://charxiv.github.io/#leaderboard) dataset, surpassing some well-known closed-source models such as GPT-4V, Gemini 1.5 Flash, and Claude 3 Sonnet.
|
22 | 22 | - `2024/07/24`: The [MLVU](https://github.com/JUNJIE99/MLVU) team evaluated InternVL-1.5 on their benchmark. The average performance on the multiple-choice task was 50.4%, while the performance on the generative tasks was 4.02. The performance on the multiple-choice task ranked #1 among all open-source MLLMs.
|
|
25 | 25 | - `2024/07/04`: 🚀 We release the [InternVL2 series](https://huggingface.co/collections/OpenGVLab/internvl-20-667d3961ab5eb12c7ed1463e). InternVL2-Pro achieved a 62.0% accuracy on the MMMU benchmark, matching the performance of leading closed-source commercial models like GPT-4o. The free API of this model can be applied by filling ([application form](https://docs.google.com/forms/d/e/1FAIpQLSfMCzhPr1OOEKau_6jwTU0EiZMSFckDo-HMlc_hUudhF_97rw/viewform?usp=sf_link)) / ([申请表](https://wj.qq.com/s2/14910502/25a4/)). Other models are available at [HF link](https://huggingface.co/collections/OpenGVLab/internvl-20-667d3961ab5eb12c7ed1463e).
|
26 | 26 | - `2024/06/19`: We propose Needle In A Multimodal Haystack ([MM-NIAH](https://github.com/OpenGVLab/MM-NIAH)), the first benchmark designed to systematically evaluate the capability of existing MLLMs to comprehend long multimodal documents.
|
27 | 27 | - `2024/05/30`: We release [ShareGPT-4o](https://sharegpt4o.github.io/), a large-scale dataset that we plan to open-source with 200K images, 10K videos, and 10K audios with detailed descriptions.
|
28 |
| -- `2024/05/29`: We release the Mini-InternVL series, which includes two chat models: [Mini-InternVL-Chat-2B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-2B-V1-5) and [Mini-InternVL-Chat-4B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-4B-V1-5). These models achieve impressive performance with minimal size: the 2B model delivers 80% of the performance with only 8% of the model size, and the 4B model achieves 90% of the performance with just 16% of the model size. For more details, please check our [blog](https://internvl.github.io/blog/2024-05-25-Mini-InternVL-1.5/). |
29 | 28 | - `2024/05/28`: Thanks to the [lmdeploy](https://github.com/InternLM/lmdeploy) team for providing AWQ quantization support. The 4-bit model is available at [OpenGVLab/InternVL-Chat-V1-5-AWQ](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5-AWQ).
|
30 | 29 | - `2024/05/13`: InternVL 1.0 can now be used as the [text encoder](https://huggingface.co/OpenGVLab/InternVL-14B-224px) for diffusion models to support multilingual generation natively in over 110 languages worldwide. See [MuLan](https://github.com/mulanai/MuLan) for more details.
|
31 | 30 | - `2024/04/18`: InternVL-Chat-V1-5 has been released at [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5), approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc.
|
@@ -929,6 +928,12 @@ If you find this project useful in your research, please consider cite:
|
929 | 928 | journal={arXiv preprint arXiv:2404.16821},
|
930 | 929 | year={2024}
|
931 | 930 | }
|
| 931 | +@article{gao2024mini, |
| 932 | + title={Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5\% Parameters and 90\% Performance}, |
| 933 | + author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others}, |
| 934 | + journal={arXiv preprint arXiv:2410.16261}, |
| 935 | + year={2024} |
| 936 | +} |
932 | 937 | ```
|
933 | 938 |
|
934 | 939 | ## Acknowledgement
|
|
0 commit comments