|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "working_dir: str = './working_dir'\n", |
| 11 | + "super_ivim_dc_filename: str = 'super_ivim_dc' # do not include .pt\n", |
| 12 | + "ivimnet_filename: str = 'ivimnet' # do not include .pt\n", |
| 13 | + "\n", |
| 14 | + "bvalues = np.array([0,15,30,45,60,75,90,105,120,135,150,175,200,400,600,800])\n", |
| 15 | + "snr = 10\n", |
| 16 | + "sample_size = 100" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "## Simulate" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "Run training, generate .pt files" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": null, |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "from super_ivim_dc.train import train\n", |
| 40 | + "\n", |
| 41 | + "train(\n", |
| 42 | + " SNR=snr, \n", |
| 43 | + " bvalues=bvalues, \n", |
| 44 | + " super_ivim_dc=True,\n", |
| 45 | + " ivimnet=True,\n", |
| 46 | + " work_dir=working_dir,\n", |
| 47 | + " super_ivim_dc_filename=super_ivim_dc_filename,\n", |
| 48 | + " ivimnet_filename=ivimnet_filename,\n", |
| 49 | + " verbose=False\n", |
| 50 | + ")" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "Files that will be created:\n", |
| 58 | + "\n", |
| 59 | + "- **super_ivim_dc_init.json** - contains the initial values used in the training\n", |
| 60 | + "- **super_ivim_dc_init_NRMSE.csv** - ???\n", |
| 61 | + "- **super_ivim_dc_init.pt** - the pytorch model" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "markdown", |
| 66 | + "metadata": {}, |
| 67 | + "source": [ |
| 68 | + "## Test\n", |
| 69 | + "\n", |
| 70 | + "Generate a simulated signal + ..." |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "from super_ivim_dc.infer import test_infer\n", |
| 80 | + "\n", |
| 81 | + "test_infer(\n", |
| 82 | + " SNR=snr,\n", |
| 83 | + " bvalues=bvalues,\n", |
| 84 | + " work_dir=working_dir,\n", |
| 85 | + " super_ivim_dc_filename=super_ivim_dc_filename,\n", |
| 86 | + " ivimnet_filename=ivimnet_filename,\n", |
| 87 | + " save_figure_to=None, # if set to None, the figure will be shown in the notebook\n", |
| 88 | + " sample_size=sample_size,\n", |
| 89 | + ")" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "markdown", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "## Generate simulated signal" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": null, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "from super_ivim_dc.IVIMNET import simulations\n", |
| 106 | + "\n", |
| 107 | + "IVIM_signal_noisy, Dt, f, Dp = simulations.sim_signal(\n", |
| 108 | + " SNR=snr, \n", |
| 109 | + " bvalues=bvalues, \n", |
| 110 | + " sims=sample_size\n", |
| 111 | + ")\n", |
| 112 | + "\n", |
| 113 | + "Dt, f, Dp = np.squeeze(Dt), np.squeeze(f), np.squeeze(Dp)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "metadata": {}, |
| 119 | + "source": [ |
| 120 | + "Run inference on the simulated signal" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "from super_ivim_dc.infer import infer_from_signal\n", |
| 130 | + "\n", |
| 131 | + "Dp_ivimnet, Dt_ivimnet, Fp_ivimnet, S0_ivimnet = infer_from_signal(\n", |
| 132 | + " signal=IVIM_signal_noisy, \n", |
| 133 | + " bvalues=bvalues,\n", |
| 134 | + " model_path=f\"{working_dir}/{ivimnet_filename}.pt\",\n", |
| 135 | + ")\n", |
| 136 | + "\n", |
| 137 | + "Dp_superivimdc, Dt_superivimdc, Fp_superivimdc, S0_superivimdc = infer_from_signal(\n", |
| 138 | + " signal=IVIM_signal_noisy, \n", |
| 139 | + " bvalues=bvalues,\n", |
| 140 | + " model_path=f\"{working_dir}/{super_ivim_dc_filename}.pt\",\n", |
| 141 | + ")" |
| 142 | + ] |
| 143 | + } |
| 144 | + ], |
| 145 | + "metadata": { |
| 146 | + "kernelspec": { |
| 147 | + "display_name": "super_ivim_dc", |
| 148 | + "language": "python", |
| 149 | + "name": "python3" |
| 150 | + }, |
| 151 | + "language_info": { |
| 152 | + "codemirror_mode": { |
| 153 | + "name": "ipython", |
| 154 | + "version": 3 |
| 155 | + }, |
| 156 | + "file_extension": ".py", |
| 157 | + "mimetype": "text/x-python", |
| 158 | + "name": "python", |
| 159 | + "nbconvert_exporter": "python", |
| 160 | + "pygments_lexer": "ipython3", |
| 161 | + "version": "3.10.12" |
| 162 | + }, |
| 163 | + "orig_nbformat": 4 |
| 164 | + }, |
| 165 | + "nbformat": 4, |
| 166 | + "nbformat_minor": 2 |
| 167 | +} |
0 commit comments