Skip to content

Commit ba55cd3

Browse files
committed
Added cvxpy requirement and code fixes
1 parent c4ab12b commit ba55cd3

File tree

2 files changed

+5
-4
lines changed

2 files changed

+5
-4
lines changed

requirements.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,4 +6,5 @@ logging
66
joblib
77
dipy
88
matplotlib
9-
scienceplots
9+
scienceplots
10+
cvxpy

src/original/OGC_AmsterdamUMC/LSQ_fitting.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -494,7 +494,7 @@ def empirical_neg_log_prior(Dt0, Fp0, Dp0, S00=None):
494494
# define the prior
495495
def neg_log_prior(p):
496496
# depends on whether S0 is fitted or not
497-
if len(p) is 4:
497+
if len(p) == 4:
498498
Dt, Fp, Dp, S0 = p[0], p[1], p[2], p[3]
499499
else:
500500
Dt, Fp, Dp = p[0], p[1], p[2]
@@ -507,7 +507,7 @@ def neg_log_prior(p):
507507
Dt_prior = stats.lognorm.pdf(Dt, Dt_shape, scale=Dt_scale)
508508
Fp_prior = stats.beta.pdf(Fp, Fp_a, Fp_b)
509509
# determine and return the prior for D, f and D* (and S0)
510-
if len(p) is 4:
510+
if len(p) == 4:
511511
S0_prior = stats.beta.pdf(S0 / 2, S0_a, S0_b)
512512
return -np.log(Dp_prior + eps) - np.log(Dt_prior + eps) - np.log(Fp_prior + eps) - np.log(
513513
S0_prior + eps)
@@ -525,7 +525,7 @@ def neg_log_likelihood(p, bvalues, dw_data):
525525
:param dw_data: 1D Array diffusion-weighted data
526526
:returns: the log-likelihood of the parameters given the data
527527
"""
528-
if len(p) is 4:
528+
if len(p) == 4:
529529
return 0.5 * (len(bvalues) + 1) * np.log(
530530
np.sum((ivim(bvalues, p[0], p[1], p[2], p[3]) - dw_data) ** 2)) # 0.5*sum simplified
531531
else:

0 commit comments

Comments
 (0)