|
| 1 | +import argparse |
| 2 | +import json |
| 3 | +import os |
| 4 | +import nibabel as nib |
| 5 | +from src.wrappers.OsipiBase import OsipiBase |
| 6 | +import numpy as np |
| 7 | +from tqdm import tqdm |
| 8 | + |
| 9 | + |
| 10 | +def read_nifti_file(input_file): |
| 11 | + """ |
| 12 | + For reading the 4d nifti image |
| 13 | + """ |
| 14 | + nifti_img = nib.load(input_file) |
| 15 | + return nifti_img.get_fdata(), nifti_img.header |
| 16 | + |
| 17 | +def read_json_file(json_file): |
| 18 | + """ |
| 19 | + For reading the json file |
| 20 | + """ |
| 21 | + |
| 22 | + if not os.path.exists(json_file): |
| 23 | + raise FileNotFoundError(f"File '{json_file}' not found.") |
| 24 | + |
| 25 | + with open(json_file, "r") as f: |
| 26 | + try: |
| 27 | + json_data = json.load(f) |
| 28 | + except json.JSONDecodeError as e: |
| 29 | + raise ValueError(f"Error decoding JSON in file '{json_file}': {e}") |
| 30 | + |
| 31 | + return json_data |
| 32 | + |
| 33 | +def read_bval_file(bval_file): |
| 34 | + """ |
| 35 | + For reading the bval file |
| 36 | + """ |
| 37 | + if not os.path.exists(bval_file): |
| 38 | + raise FileNotFoundError(f"File '{bval_file}' not found.") |
| 39 | + |
| 40 | + bval_data = np.genfromtxt(bval_file, dtype=float) |
| 41 | + return bval_data |
| 42 | + |
| 43 | +def read_bvec_file(bvec_file): |
| 44 | + """ |
| 45 | + For reading the bvec file |
| 46 | + """ |
| 47 | + if not os.path.exists(bvec_file): |
| 48 | + raise FileNotFoundError(f"File '{bvec_file}' not found.") |
| 49 | + |
| 50 | + bvec_data = np.genfromtxt(bvec_file) |
| 51 | + bvec_data = np.transpose(bvec_data) # Transpose the array |
| 52 | + return bvec_data |
| 53 | + |
| 54 | +def save_nifti_file(data, output_file, affine=None, **kwargs): |
| 55 | + """ |
| 56 | + For saving the 3d nifti images of the output of the algorithm |
| 57 | + """ |
| 58 | + if affine is None: |
| 59 | + affine = np.eye(data.ndim + 1) |
| 60 | + output_img = nib.nifti1.Nifti1Image(data, affine , **kwargs) |
| 61 | + nib.save(output_img, output_file) |
| 62 | + |
| 63 | +def loop_over_first_n_minus_1_dimensions(arr): |
| 64 | + """ |
| 65 | + Loops over the first n-1 dimensions of a numpy array. |
| 66 | +
|
| 67 | + Args: |
| 68 | + arr: A numpy array. |
| 69 | +
|
| 70 | + Yields: |
| 71 | + A tuple containing the indices for the current iteration and a flattened view of the remaining dimensions. |
| 72 | + """ |
| 73 | + n = arr.ndim |
| 74 | + for idx in np.ndindex(*arr.shape[:n-1]): |
| 75 | + flat_view = arr[idx].flatten() |
| 76 | + yield idx, flat_view |
| 77 | + |
| 78 | + |
| 79 | + |
| 80 | +if __name__ == "__main__": |
| 81 | + parser = argparse.ArgumentParser(description="Read a 4D NIfTI phantom file along with BIDS JSON, b-vector, and b-value files.") |
| 82 | + parser.add_argument("input_file", type=str, help="Path to the input 4D NIfTI file.") |
| 83 | + parser.add_argument("bvec_file", type=str, help="Path to the b-vector file.") |
| 84 | + parser.add_argument("bval_file", type=str, help="Path to the b-value file.") |
| 85 | + parser.add_argument("--affine", type=float, nargs="+", help="Affine matrix for NIfTI image.") |
| 86 | + parser.add_argument("--algorithm", type=str, default="OJ_GU_seg", help="Select the algorithm to use.") |
| 87 | + parser.add_argument("algorithm_args", nargs=argparse.REMAINDER, help="Additional arguments for the algorithm.") |
| 88 | + |
| 89 | + args = parser.parse_args() |
| 90 | + |
| 91 | + try: |
| 92 | + # Read the 4D NIfTI file |
| 93 | + data, _ = read_nifti_file(args.input_file) |
| 94 | + |
| 95 | + # Read the b-vector, and b-value files |
| 96 | + bvecs = read_bvec_file(args.bvec_file) |
| 97 | + bvals = read_bval_file(args.bval_file) |
| 98 | + |
| 99 | + # Pass additional arguments to the algorithm |
| 100 | + |
| 101 | + fit = OsipiBase(algorithm=args.algorithm) |
| 102 | + f_image = [] |
| 103 | + Dp_image = [] |
| 104 | + D_image = [] |
| 105 | + |
| 106 | + # This is necessary for the tqdm to display progress bar. |
| 107 | + n = data.ndim |
| 108 | + total_iteration = np.prod(data.shape[:n-1]) |
| 109 | + for idx, view in tqdm(loop_over_first_n_minus_1_dimensions(data), desc=f"{args.algorithm} is fitting", dynamic_ncols=True, total=total_iteration): |
| 110 | + [f_fit, Dp_fit, D_fit] = fit.osipi_fit(view, bvals) |
| 111 | + f_image.append(f_fit) |
| 112 | + Dp_image.append(Dp_fit) |
| 113 | + D_image.append(D_fit) |
| 114 | + |
| 115 | + # Convert lists to NumPy arrays |
| 116 | + f_image = np.array(f_image) |
| 117 | + Dp_image = np.array(Dp_image) |
| 118 | + D_image = np.array(D_image) |
| 119 | + |
| 120 | + # Reshape arrays if needed |
| 121 | + f_image = f_image.reshape(data.shape[:data.ndim-1]) |
| 122 | + Dp_image = Dp_image.reshape(data.shape[:data.ndim-1]) |
| 123 | + D_image = D_image.reshape(data.shape[:data.ndim-1]) |
| 124 | + |
| 125 | + save_nifti_file(f_image, "f.nii.gz", args.affine) |
| 126 | + save_nifti_file(Dp_image, "dp.nii.gz", args.affine) |
| 127 | + save_nifti_file(D_image, "d.nii.gz", args.affine) |
| 128 | + |
| 129 | + except Exception as e: |
| 130 | + print(f"Error: {e}") |
| 131 | + |
0 commit comments