|
| 1 | +import numpy as np |
| 2 | +import numpy.testing as npt |
| 3 | +import pytest |
| 4 | +#import torch |
| 5 | + |
| 6 | +from utilities.data_simulation.GenerateData import GenerateData |
| 7 | + |
| 8 | +#run using python -m pytest from the root folder |
| 9 | + |
| 10 | +test_monoexponential_data = [ |
| 11 | + pytest.param(0, np.linspace(0, 1000, 11), id='0'), |
| 12 | + pytest.param(0.1, np.linspace(0, 1000, 11), id='0.1'), |
| 13 | + pytest.param(0.2, np.linspace(0, 1000, 11), id='0.2'), |
| 14 | + pytest.param(0.3, np.linspace(0, 1000, 11), id='0.3'), |
| 15 | + pytest.param(0.4, np.linspace(0, 1000, 11), id='0.4'), |
| 16 | + pytest.param(0.5, np.linspace(0, 1000, 11), id='0.5'), |
| 17 | + pytest.param(0.8, np.linspace(0, 1000, 11), id='0.8'), |
| 18 | + pytest.param(1, np.linspace(0, 1000, 11), id='1'), |
| 19 | +] |
| 20 | +@pytest.mark.parametrize("D, bvals", test_monoexponential_data) |
| 21 | +def test_monoexponential(D, bvals): |
| 22 | + gd = GenerateData() |
| 23 | + gd_signal = gd.exponential_signal(D, bvals) |
| 24 | + testing_signal = np.exp(-D * np.asarray(bvals, dtype='float64')) |
| 25 | + npt.assert_allclose(gd_signal, testing_signal) |
| 26 | + assert(gd_signal[0] >= testing_signal[0]) |
| 27 | + |
| 28 | +test_ivim_data = [ |
| 29 | + pytest.param(0.01, 0.0, 1, 1, np.linspace(0, 1000, 11), None, False), |
| 30 | + pytest.param(0.01, 0.1, 0.05, 1, np.linspace(0, 1000, 11), None, False), |
| 31 | + pytest.param(0.05, 0.2, 0.1, 1, np.linspace(0, 800, 11), None, False), |
| 32 | + pytest.param(0.04, 0.15, 0.25, 1.5, np.linspace(0, 1000, 2), 10, True), |
| 33 | + pytest.param(0.1, 0.5, 0.5, 0.5, np.linspace(0, 1500, 5), 100, True), |
| 34 | + pytest.param(0.01, 0.2, 0.1, 1, np.linspace(10, 1500, 11), 100, False), |
| 35 | + pytest.param(0.1, 0.15, 0.05, 1, np.linspace(10, 1000, 8), 5, False) |
| 36 | +] |
| 37 | +@pytest.mark.parametrize('D, Dp, f, S0, bvals, snr, rician_noise', test_ivim_data) |
| 38 | +def test_ivim(D, Dp, f, S0, bvals, snr, rician_noise): |
| 39 | + gd = GenerateData() |
| 40 | + gd_signal = gd.ivim_signal(D, Dp, f, S0, bvals, snr, rician_noise) |
| 41 | + testing_signal = S0 * ((1 - f) * np.exp(-D * bvals) + f * np.exp(-Dp * bvals)) |
| 42 | + atol = 0.0 |
| 43 | + if snr is not None: |
| 44 | + atol = 4 / snr |
| 45 | + npt.assert_allclose(gd_signal, testing_signal, atol=atol) |
| 46 | + |
| 47 | + |
| 48 | +test_linear_data = [ |
| 49 | + pytest.param(0, np.linspace(0, 1000, 11), 0, id='0'), |
| 50 | + pytest.param(0.1, np.linspace(0, 1000, 11), 10, id='0.1'), |
| 51 | + pytest.param(0.2, np.linspace(0, 1000, 11), -10, id='0.2'), |
| 52 | + pytest.param(0.3, np.linspace(0, 1000, 11), 0, id='0.3'), |
| 53 | + pytest.param(0.4, np.linspace(0, 1000, 11), 0, id='0.4'), |
| 54 | + pytest.param(0.5, np.linspace(0, 1000, 11), 0, id='0.5'), |
| 55 | + pytest.param(0.8, np.linspace(0, 1000, 11), 0, id='0.8'), |
| 56 | + pytest.param(1, np.linspace(0, 1000, 11), 0, id='1'), |
| 57 | +] |
| 58 | +@pytest.mark.parametrize("D, bvals, offset", test_linear_data) |
| 59 | +def test_linear(D, bvals, offset): |
| 60 | + gd = GenerateData() |
| 61 | + gd_signal = gd.linear_signal(D, bvals, offset) |
| 62 | + testing_signal = -D * np.asarray(bvals, dtype='float64') |
| 63 | + testing_signal += offset |
| 64 | + npt.assert_allclose(gd_signal, testing_signal) |
| 65 | + assert(gd_signal[0] >= testing_signal[0]) |
| 66 | + |
| 67 | + gd_exponential = gd.exponential_signal(D, bvals) |
| 68 | + gd_log_exponential = np.log(gd_exponential) + offset |
| 69 | + real_mask = np.isfinite(gd_log_exponential) |
| 70 | + |
| 71 | + npt.assert_allclose(gd_log_exponential[real_mask], gd_signal[real_mask]) |
0 commit comments