@@ -655,7 +655,7 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
655
655
nullptr ;
656
656
}
657
657
658
- template <int D, int ncols1, int ncols2, int KQ_stride > // D == head size
658
+ template <int D, int ncols1, int ncols2> // D == head size
659
659
__launch_bounds__ (D, 1 )
660
660
static __global__ void flash_attn_stream_k_fixup(
661
661
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
@@ -813,13 +813,13 @@ static void on_no_fattn_vec_case(const int D) {
813
813
fprintf (stderr, " Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, iq4_nl, q5_0, q5_1, q6_0, q8_0, and f16.\n " );
814
814
GGML_ABORT (" fatal error" );
815
815
} else {
816
- fprintf (stderr, " Unsupported KV type combination for head_size 256 .\n " );
816
+ fprintf (stderr, " Unsupported KV type combination for head_size %d .\n " , D );
817
817
fprintf (stderr, " Only f16 is supported.\n " );
818
818
GGML_ABORT (" fatal error" );
819
819
}
820
820
}
821
821
822
- template <int D , int ncols1, int ncols2, int KQ_stride >
822
+ template <int DV , int ncols1, int ncols2>
823
823
void launch_fattn (
824
824
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
825
825
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
@@ -905,10 +905,13 @@ void launch_fattn(
905
905
const int ntiles_total = ntiles_x * (Q->ne [2 ] / ncols2) * Q->ne [3 ];
906
906
907
907
const dim3 block_dim (warp_size, nwarps, 1 );
908
+ int max_blocks_per_sm = 1 ; // Max. number of active blocks limited by occupancy.
909
+ CUDA_CHECK (cudaOccupancyMaxActiveBlocksPerMultiprocessor (&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z , nbytes_shared));
910
+
908
911
dim3 blocks_num;
909
912
if (stream_k) {
910
913
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
911
- const int max_blocks = 2 *nsm;
914
+ const int max_blocks = max_blocks_per_sm *nsm;
912
915
const int tiles_nwaves = (ntiles_total + max_blocks - 1 ) / max_blocks;
913
916
const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves);
914
917
@@ -920,14 +923,11 @@ void launch_fattn(
920
923
blocks_num.y = 1 ;
921
924
blocks_num.z = 1 ;
922
925
923
- dst_tmp_meta.alloc (blocks_num.x *ncols * (2 *2 + D ) * sizeof (float ));
926
+ dst_tmp_meta.alloc (blocks_num.x *ncols * (2 *2 + DV ) * sizeof (float ));
924
927
} else {
925
928
GGML_ASSERT (K->ne [1 ] % KQ_row_granularity == 0 );
926
929
const int ntiles_KQ = K->ne [1 ] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
927
930
928
- int max_blocks_per_sm = 1 ; // Max. number of active blocks limited by occupancy.
929
- CUDA_CHECK (cudaOccupancyMaxActiveBlocksPerMultiprocessor (&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z , nbytes_shared));
930
-
931
931
// parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
932
932
parallel_blocks = std::max ((nsm * max_blocks_per_sm) / ntiles_total, 1 );
933
933
@@ -1005,19 +1005,19 @@ void launch_fattn(
1005
1005
1006
1006
if (stream_k) {
1007
1007
if (ntiles_total % blocks_num.x != 0 ) { // Fixup is only needed if the SMs work on fractional tiles.
1008
- const dim3 block_dim_combine (D , 1 , 1 );
1008
+ const dim3 block_dim_combine (DV , 1 , 1 );
1009
1009
const dim3 blocks_num_combine = {blocks_num.x , ncols1, ncols2};
1010
1010
1011
- flash_attn_stream_k_fixup<D , ncols1, ncols2, KQ_stride >
1011
+ flash_attn_stream_k_fixup<DV , ncols1, ncols2>
1012
1012
<<<blocks_num_combine, block_dim_combine, 0 , main_stream>>>
1013
1013
((float *) KQV->data , dst_tmp_meta.ptr , Q->ne [1 ], Q->ne [2 ], K->ne [1 ]);
1014
1014
}
1015
1015
} else if (parallel_blocks > 1 ) {
1016
- const dim3 block_dim_combine (D , 1 , 1 );
1016
+ const dim3 block_dim_combine (DV , 1 , 1 );
1017
1017
const dim3 blocks_num_combine (Q->ne [1 ], 1 , blocks_num.z );
1018
1018
const size_t nbytes_shared_combine = parallel_blocks*sizeof (float2 );
1019
1019
1020
- flash_attn_combine_results<D >
1020
+ flash_attn_combine_results<DV >
1021
1021
<<<blocks_num_combine, block_dim_combine, nbytes_shared_combine, main_stream>>>
1022
1022
(dst_tmp.ptr , dst_tmp_meta.ptr , (float *) KQV->data , parallel_blocks);
1023
1023
}
0 commit comments