Replies: 1 comment
-
Hi, could you share some details about your environment? Are you using a NeMo container? If so, which one? |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
As stated by other discussions here, I used
resume_if_exists
to resume my previous training, however it resulted in a sudden spike ofval_wer
as you can see in the image.For context here is the full command that i used:
/home/sabat/NeMo/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py --config-path=/home/sabat/NeMo/examples/asr/conf/contextnet_rnnt --config-name=config_rnnt_bpe model.train_ds.manifest_filepath=/home/sabat/NeMo/data/train_clean_100.json model.validation_ds.manifest_filepath=/home/sabat/NeMo/data/dev_clean.json model.test_ds.manifest_filepath=/home/sabat/NeMo/data/test_clean.json model.tokenizer.dir=/home/sabat/NeMo/tokenizers/tokenizer_spe_bpe_v70 model.tokenizer.type=bpe trainer.devices=-1 trainer.accelerator=gpu trainer.max_epochs=100 trainer.precision=16 exp_manager.create_wandb_logger=True exp_manager.wandb_logger_kwargs.name=rnnt_bpe_v70_clean100 exp_manager.wandb_logger_kwargs.project=Cleft2Speech ++exp_manager.resume_if_exists=True +exp_manager.explicit_log_dir=/home/sabat/NeMo/nemo_experiments/ConvRNNTBPE5x1/2025-03-18_07-06-32/ ++exp_manager.create_early_stopping_callback=True ++exp_manager.disable_validation_on_resume=False
Beta Was this translation helpful? Give feedback.
All reactions