|
| 1 | +from npcpy.llm_funcs import get_llm_response |
| 2 | +from npcpy.data.load import load_pdf, load_image |
| 3 | +import os |
| 4 | +import pandas as pd |
| 5 | +import json |
| 6 | +from PIL import Image |
| 7 | +import io |
| 8 | +import numpy as np |
| 9 | +import argparse |
| 10 | +from typing import List, Dict, Any, Optional, Union |
| 11 | +import time |
| 12 | +import sys |
| 13 | + |
| 14 | +def process_pdf(pdf_path: str, extract_images: bool = True, extract_tables: bool = False) -> Dict[str, Any]: |
| 15 | + """ |
| 16 | + Process PDF file to extract text, images, and optionally tables |
| 17 | + |
| 18 | + Args: |
| 19 | + pdf_path: Path to the PDF file |
| 20 | + extract_images: Whether to extract images from PDF |
| 21 | + extract_tables: Whether to extract tables from PDF |
| 22 | + |
| 23 | + Returns: |
| 24 | + Dictionary containing extracted content |
| 25 | + """ |
| 26 | + result = {"text": [], "images": [], "tables": []} |
| 27 | + |
| 28 | + if not os.path.exists(pdf_path): |
| 29 | + print(f"Error: PDF file not found at {pdf_path}") |
| 30 | + return result |
| 31 | + |
| 32 | + try: |
| 33 | + pdf_df = load_pdf(pdf_path) |
| 34 | + |
| 35 | + # Extract text |
| 36 | + if 'texts' in pdf_df.columns: |
| 37 | + texts = json.loads(pdf_df['texts'].iloc[0]) |
| 38 | + for item in texts: |
| 39 | + result["text"].append({ |
| 40 | + "page": item.get('page', 0), |
| 41 | + "content": item.get('content', ''), |
| 42 | + "bbox": item.get('bbox', None) |
| 43 | + }) |
| 44 | + |
| 45 | + # Extract images |
| 46 | + if extract_images and 'images' in pdf_df.columns: |
| 47 | + images_data = json.loads(pdf_df['images'].iloc[0]) |
| 48 | + temp_paths = [] |
| 49 | + |
| 50 | + for idx, img_data in enumerate(images_data): |
| 51 | + if 'array' in img_data and 'shape' in img_data and 'dtype' in img_data: |
| 52 | + shape = img_data['shape'] |
| 53 | + dtype = img_data['dtype'] |
| 54 | + img_array = np.frombuffer(img_data['array'], dtype=np.dtype(dtype)) |
| 55 | + img_array = img_array.reshape(shape) |
| 56 | + |
| 57 | + img = Image.fromarray(img_array) |
| 58 | + temp_img_path = f"temp_pdf_image_{os.path.basename(pdf_path)}_{idx}.png" |
| 59 | + img.save(temp_img_path) |
| 60 | + |
| 61 | + result["images"].append({ |
| 62 | + "path": temp_img_path, |
| 63 | + "page": img_data.get('page', 0), |
| 64 | + "bbox": img_data.get('bbox', None) |
| 65 | + }) |
| 66 | + temp_paths.append(temp_img_path) |
| 67 | + |
| 68 | + result["temp_paths"] = temp_paths |
| 69 | + |
| 70 | + # Extract tables (if requested and available) |
| 71 | + if extract_tables and 'tables' in pdf_df.columns: |
| 72 | + tables_data = json.loads(pdf_df['tables'].iloc[0]) |
| 73 | + for table in tables_data: |
| 74 | + if isinstance(table, dict) and 'data' in table: |
| 75 | + result["tables"].append({ |
| 76 | + "page": table.get('page', 0), |
| 77 | + "data": table.get('data'), |
| 78 | + "caption": table.get('caption', '') |
| 79 | + }) |
| 80 | + |
| 81 | + except Exception as e: |
| 82 | + print(f"Error processing PDF {pdf_path}: {e}") |
| 83 | + |
| 84 | + return result |
| 85 | + |
| 86 | +def process_image(image_path: str) -> Optional[str]: |
| 87 | + """Process image file and return path if valid""" |
| 88 | + if not os.path.exists(image_path): |
| 89 | + print(f"Error: Image file not found at {image_path}") |
| 90 | + return None |
| 91 | + |
| 92 | + try: |
| 93 | + # Just verify it's a valid image |
| 94 | + Image.open(image_path) |
| 95 | + return image_path |
| 96 | + except Exception as e: |
| 97 | + print(f"Error processing image {image_path}: {e}") |
| 98 | + return None |
| 99 | + |
| 100 | +def process_csv(csv_path: str, max_rows: int = 10) -> Optional[str]: |
| 101 | + """Process CSV file and return sample content""" |
| 102 | + if not os.path.exists(csv_path): |
| 103 | + print(f"Error: CSV file not found at {csv_path}") |
| 104 | + return None |
| 105 | + |
| 106 | + try: |
| 107 | + data = pd.read_csv(csv_path) |
| 108 | + return data.head(max_rows).to_string() |
| 109 | + except Exception as e: |
| 110 | + print(f"Error processing CSV {csv_path}: {e}") |
| 111 | + return None |
| 112 | + |
| 113 | +def extract_and_analyze( |
| 114 | + file_paths: List[str], |
| 115 | + model: str = 'gemma3:4b', |
| 116 | + provider: str = 'ollama', |
| 117 | + preprocess: bool = False, |
| 118 | + extract_tables: bool = False, |
| 119 | + output_json: bool = False, |
| 120 | + output_file: str = None, |
| 121 | +) -> Dict[str, Any]: |
| 122 | + """ |
| 123 | + Extract content from files and analyze using an LLM |
| 124 | + |
| 125 | + Args: |
| 126 | + file_paths: List of paths to files (PDFs, images, CSVs) |
| 127 | + model: LLM model to use |
| 128 | + provider: LLM provider |
| 129 | + preprocess: Whether to do detailed preprocessing (True) or use attachment-based approach (False) |
| 130 | + extract_tables: Whether to extract tables from PDFs |
| 131 | + output_json: Whether to ask for structured JSON output |
| 132 | + output_file: Optional path to save results |
| 133 | + |
| 134 | + Returns: |
| 135 | + Dictionary containing analysis results |
| 136 | + """ |
| 137 | + start_time = time.time() |
| 138 | + |
| 139 | + if not preprocess: |
| 140 | + # Simple attachment-based approach |
| 141 | + print(f"Using simple attachment-based approach with {len(file_paths)} files") |
| 142 | + format_param = "json" if output_json else None |
| 143 | + |
| 144 | + response = get_llm_response( |
| 145 | + 'Extract and analyze content from these files. Identify key concepts, data points, and provide a comprehensive analysis.', |
| 146 | + model=model, |
| 147 | + provider=provider, |
| 148 | + attachments=file_paths, |
| 149 | + format=format_param |
| 150 | + ) |
| 151 | + |
| 152 | + result = { |
| 153 | + "analysis": response['response'], |
| 154 | + "processing_time": time.time() - start_time, |
| 155 | + "file_count": len(file_paths), |
| 156 | + "approach": "attachment-based" |
| 157 | + } |
| 158 | + |
| 159 | + else: |
| 160 | + # Detailed preprocessing approach |
| 161 | + print(f"Using detailed preprocessing approach with {len(file_paths)} files") |
| 162 | + pdf_results = [] |
| 163 | + image_paths = [] |
| 164 | + csv_contents = [] |
| 165 | + temp_files = [] |
| 166 | + |
| 167 | + # Process each file based on type |
| 168 | + for file_path in file_paths: |
| 169 | + _, ext = os.path.splitext(file_path) |
| 170 | + ext = ext.lower() |
| 171 | + |
| 172 | + if ext == '.pdf': |
| 173 | + print(f"Processing PDF: {file_path}") |
| 174 | + pdf_result = process_pdf(file_path, extract_tables=extract_tables) |
| 175 | + pdf_results.append({"path": file_path, "content": pdf_result}) |
| 176 | + |
| 177 | + # Add extracted images to the list |
| 178 | + if "temp_paths" in pdf_result: |
| 179 | + image_paths.extend(pdf_result["temp_paths"]) |
| 180 | + temp_files.extend(pdf_result["temp_paths"]) |
| 181 | + |
| 182 | + elif ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp']: |
| 183 | + print(f"Processing image: {file_path}") |
| 184 | + img_path = process_image(file_path) |
| 185 | + if img_path: |
| 186 | + image_paths.append(img_path) |
| 187 | + |
| 188 | + elif ext == '.csv': |
| 189 | + print(f"Processing CSV: {file_path}") |
| 190 | + csv_content = process_csv(file_path) |
| 191 | + if csv_content: |
| 192 | + csv_contents.append({"path": file_path, "content": csv_content}) |
| 193 | + |
| 194 | + # Build prompt with extracted content |
| 195 | + prompt = "Analyze the following content extracted from multiple documents:\n\n" |
| 196 | + |
| 197 | + # Add PDF text content |
| 198 | + for pdf_result in pdf_results: |
| 199 | + pdf_path = pdf_result["path"] |
| 200 | + pdf_content = pdf_result["content"] |
| 201 | + |
| 202 | + if pdf_content["text"]: |
| 203 | + prompt += f"PDF TEXT CONTENT ({os.path.basename(pdf_path)}):\n" |
| 204 | + # Limit to first 5 text blocks to avoid exceeding context window |
| 205 | + for i, text_item in enumerate(pdf_content["text"][:5]): |
| 206 | + prompt += f"- Page {text_item['page']}: {text_item['content'][:500]}...\n" |
| 207 | + prompt += "\n" |
| 208 | + |
| 209 | + # Add table content if available |
| 210 | + if pdf_content["tables"]: |
| 211 | + prompt += f"PDF TABLES ({os.path.basename(pdf_path)}):\n" |
| 212 | + for i, table in enumerate(pdf_content["tables"][:3]): |
| 213 | + prompt += f"- Table {i+1} (Page {table['page']}): {table['caption']}\n" |
| 214 | + prompt += f"{str(table['data'])[:500]}...\n" |
| 215 | + prompt += "\n" |
| 216 | + |
| 217 | + # Add CSV content |
| 218 | + for csv_item in csv_contents: |
| 219 | + prompt += f"CSV DATA ({os.path.basename(csv_item['path'])}):\n" |
| 220 | + prompt += f"{csv_item['content']}\n\n" |
| 221 | + |
| 222 | + # Add analysis instructions |
| 223 | + prompt += "\nPlease provide a comprehensive analysis of the content above, identifying key concepts, patterns, and insights." |
| 224 | + |
| 225 | + if output_json: |
| 226 | + prompt += "\nFormat your response as a JSON object with the following structure: " + \ |
| 227 | + '{"key_concepts": [], "data_points": [], "analysis": "", "insights": []}' |
| 228 | + |
| 229 | + # Call LLM with preprocessed content and images |
| 230 | + format_param = "json" if output_json else None |
| 231 | + response = get_llm_response( |
| 232 | + prompt=prompt, |
| 233 | + model=model, |
| 234 | + provider=provider, |
| 235 | + images=image_paths, |
| 236 | + format=format_param |
| 237 | + ) |
| 238 | + |
| 239 | + result = { |
| 240 | + "analysis": response['response'], |
| 241 | + "processing_time": time.time() - start_time, |
| 242 | + "file_count": len(file_paths), |
| 243 | + "pdf_count": len(pdf_results), |
| 244 | + "image_count": len(image_paths), |
| 245 | + "csv_count": len(csv_contents), |
| 246 | + "approach": "detailed-preprocessing" |
| 247 | + } |
| 248 | + |
| 249 | + # Clean up temporary files |
| 250 | + for temp_file in temp_files: |
| 251 | + if os.path.exists(temp_file): |
| 252 | + try: |
| 253 | + os.remove(temp_file) |
| 254 | + except Exception as e: |
| 255 | + print(f"Error removing temp file {temp_file}: {e}") |
| 256 | + |
| 257 | + # Save results if output file specified |
| 258 | + if output_file: |
| 259 | + try: |
| 260 | + with open(output_file, 'w') as f: |
| 261 | + json.dump(result, f, indent=2) |
| 262 | + print(f"Results saved to {output_file}") |
| 263 | + except Exception as e: |
| 264 | + print(f"Error saving results to {output_file}: {e}") |
| 265 | + |
| 266 | + return result |
| 267 | + |
| 268 | +if __name__ == "__main__": |
| 269 | + parser = argparse.ArgumentParser(description="OCR Pipeline for extracting and analyzing document content") |
| 270 | + parser.add_argument('files', nargs='+', help='Paths to files (PDFs, images, CSVs)') |
| 271 | + parser.add_argument('--model', default='gemma3:4b', help='LLM model to use') |
| 272 | + parser.add_argument('--provider', default='ollama', help='LLM provider') |
| 273 | + parser.add_argument('--preprocess', action='store_true', help='Use detailed preprocessing (default: attachment-based)') |
| 274 | + parser.add_argument('--tables', action='store_true', help='Extract tables from PDFs') |
| 275 | + parser.add_argument('--json', action='store_true', help='Request JSON-formatted output') |
| 276 | + parser.add_argument('--output', help='Save results to file') |
| 277 | + |
| 278 | + args = parser.parse_args() |
| 279 | + |
| 280 | + result = extract_and_analyze( |
| 281 | + file_paths=args.files, |
| 282 | + model=args.model, |
| 283 | + provider=args.provider, |
| 284 | + preprocess=args.preprocess, |
| 285 | + extract_tables=args.tables, |
| 286 | + output_json=args.json, |
| 287 | + output_file=args.output |
| 288 | + ) |
| 289 | + |
| 290 | + print("\nAnalysis Results:") |
| 291 | + print(result["analysis"]) |
| 292 | + print(f"\nProcessing completed in {result['processing_time']:.2f} seconds") |
| 293 | + |
| 294 | + # Example paths for direct script execution if no args provided |
| 295 | + if not sys.argv[1:]: |
| 296 | + print("\nRunning example with default paths:") |
| 297 | + pdf_path = 'test_data/yuan2004.pdf' |
| 298 | + image_path = 'test_data/markov_chain.png' |
| 299 | + csv_path = 'test_data/sample_data.csv' |
| 300 | + |
| 301 | + result = extract_and_analyze( |
| 302 | + file_paths=[pdf_path, image_path, csv_path], |
| 303 | + model='gemma:4b', |
| 304 | + provider='ollama', |
| 305 | + preprocess=False |
| 306 | + ) |
| 307 | + |
| 308 | + print("\nExample Analysis Results:") |
| 309 | + print(result["analysis"]) |
| 310 | + print(f"\nExample processing completed in {result['processing_time']:.2f} seconds") |
0 commit comments