Skip to content

Commit f1928a8

Browse files
author
Spirina Majya Aleksandrovna
committed
ligr_layers.py -> ligr.py
1 parent 716b501 commit f1928a8

File tree

3 files changed

+2
-2
lines changed

3 files changed

+2
-2
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -116,7 +116,7 @@ The table below lists recommender models that are available in RecTools.
116116
| Model | Type | Description (🎏 for user/item features, 🔆 for warm inference, ❄️ for cold inference support) | Tutorials & Benchmarks |
117117
|---------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
118118
| HSTU | Neural Network | `rectools.models.HSTUModel` - Sequential model with unidirectional pointwise aggregated attention mechanism, incorporating relative attention bias from positional and temporal information, introduced in ["Actions speak louder then words..."](https://arxiv.org/pdf/2402.17152), combined with "Shifted Sequence" training objective as in original public benchmarks<br>🎏 | 📓 [HSTU Theory & Practice](examples/tutorials/transformers_HSTU_tutorial.ipynb) <br> 📕 [Transformers Theory & Practice](examples/tutorials/transformers_tutorial.ipynb)<br> 📗 [Advanced training guide](examples/tutorials/transformers_advanced_training_guide.ipynb) <br> 🚀 [Top performance on public datasets](examples/tutorials/transformers_HSTU_tutorial.ipynb)
119-
| SASRec | Neural Network | `rectools.models.SASRecModel` - Transformer-based sequential model with unidirectional attention mechanism and "Shifted Sequence" training objective <br>🎏 | 📕 [Transformers Theory & Practice](examples/tutorials/transformers_tutorial.ipynb)<br> 📗 [Advanced training guide](examples/tutorials/transformers_advanced_training_guide.ipynb) <br> 📘 [Customization guide](examples/tutorials/transformers_customization_guide.ipynb) <br> 🚀 [Top performance on public benchmarks](https://github.com/blondered/bert4rec_repro?tab=readme-ov-file#rectools-transformers-benchmark-results) |
119+
| SASRec | Neural Network | `rectools.models.SASRecModel` - Transformer-based sequential model with unidirectional attention mechanism and "Shifted Sequence" training objective. <br> For eSASRec variant specify `rectools.models.nn.transformers.ligr.LiGRLayers` for `transformer_layers_type` and `sampled_softmax` for `loss` <br>🎏 | 📕 [Transformers Theory & Practice](examples/tutorials/transformers_tutorial.ipynb)<br> 📗 [Advanced training guide](examples/tutorials/transformers_advanced_training_guide.ipynb) <br> 📘 [Customization guide](examples/tutorials/transformers_customization_guide.ipynb) <br> 🚀 [Top performance on public benchmarks](https://github.com/blondered/bert4rec_repro?tab=readme-ov-file#rectools-transformers-benchmark-results) |
120120
| BERT4Rec | Neural Network | `rectools.models.BERT4RecModel` - Transformer-based sequential model with bidirectional attention mechanism and "MLM" (masked item) training objective <br>🎏 | 📕 [Transformers Theory & Practice](examples/tutorials/transformers_tutorial.ipynb)<br> 📗 [Advanced training guide](examples/tutorials/transformers_advanced_training_guide.ipynb) <br> 📘 [Customization guide](examples/tutorials/transformers_customization_guide.ipynb) <br> 🚀 [Top performance on public benchmarks](https://github.com/blondered/bert4rec_repro?tab=readme-ov-file#rectools-transformers-benchmark-results) |
121121
| [implicit](https://github.com/benfred/implicit) ALS Wrapper | Matrix Factorization | `rectools.models.ImplicitALSWrapperModel` - Alternating Least Squares Matrix Factorizattion algorithm for implicit feedback. <br>🎏 | 📙 [Theory & Practice](https://rectools.readthedocs.io/en/latest/examples/tutorials/baselines_extended_tutorial.html#Implicit-ALS)<br> 🚀 [50% boost to metrics with user & item features](examples/5_benchmark_iALS_with_features.ipynb) |
122122
| [implicit](https://github.com/benfred/implicit) BPR-MF Wrapper | Matrix Factorization | `rectools.models.ImplicitBPRWrapperModel` - Bayesian Personalized Ranking Matrix Factorization algorithm. | 📙 [Theory & Practice](https://rectools.readthedocs.io/en/latest/examples/tutorials/baselines_extended_tutorial.html#Bayesian-Personalized-Ranking-Matrix-Factorization-(BPR-MF)) |

tests/models/nn/transformers/test_sasrec.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
TrainerCallable,
3434
TransformerLightningModule,
3535
)
36-
from rectools.models.nn.transformers.ligr_layers import LiGRLayers
36+
from rectools.models.nn.transformers.ligr import LiGRLayers
3737
from rectools.models.nn.transformers.negative_sampler import CatalogUniformSampler
3838
from rectools.models.nn.transformers.sasrec import SASRecDataPreparator, SASRecTransformerLayers
3939
from rectools.models.nn.transformers.similarity import DistanceSimilarityModule

0 commit comments

Comments
 (0)