-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdeep_qlearning.py
195 lines (158 loc) · 6.84 KB
/
deep_qlearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
from copy import deepcopy
from ..dl.optimizer import Adam
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, state, action, reward, next_state):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = (state, action, reward, next_state)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
r= np.random.choice(np.arange(len(self.memory)), batch_size)
return np.array(self.memory)[r].tolist()
def __len__(self):
return len(self.memory)
class DeepQLearning:
''' Deep Q learning
Based on : https://github.com/rlberry-py/tutorials
Parameters
----------
n_episode : int,
Number of episodes to train on
buffer_capacity : int,
Capacity of the Replay Buffer
batch_size : int,
batch size to train the nn with
gamma : float,
Discount factor
epsilon : float,
...
eval_every: int,
Evaluate nn every 'eval_every' steps
reward_threshold : int,
Maximum value of reward, if receive this reward -> stops
update_target_every : int,
Number of steps the target network is updated
'''
def __init__(self,n_episode=500,buffer_capacity=10000,batch_size = 256,gamma =0.99,epsilon = 0.99,eval_every=5,reward_threshold=100,update_target_every=20):
self.n_episode = n_episode
self.replay_buffer = ReplayBuffer(buffer_capacity)
self.batch_size = batch_size
self.gamma = gamma
self.epsilon = epsilon
self.eval_every = eval_every
self.reward_threshold = reward_threshold
self.update_target_every = update_target_every
def _get_q(self,states):
return self.nn.predict(states)
def _choose_action(self,state, epsilon):
''' Return action according to an epsilon-greedy exploration policy '''
if np.random.uniform() < epsilon:
return self.env.action_space.sample()
else:
q = self._get_q([state])
return q.argmax()
def _eval_dqn(self,n_sim=5):
''' Monte Carlo evaluation of DQN agent.
Repeat n_sim times:
* Run the DQN policy until the environment reaches a terminal state (= one episode)
* Compute the sum of rewards in this episode
* Store the sum of rewards in the episode_rewards array.
'''
env_copy = deepcopy(self.env)
episode_rewards = np.zeros(n_sim)
for ii in range(n_sim):
state = env_copy.reset()
done = False
while not done:
action = self._choose_action(state, 0.0)
next_state, reward, done, _ = env_copy.step(action)
episode_rewards[ii] += reward
state = next_state
return episode_rewards
def _update(self,state, action, reward, next_state, done,ep):
# add data to replay buffer
if done:
next_state = None
self.replay_buffer.push(state, action, reward, next_state)
if len(self.replay_buffer) < self.batch_size:
return np.inf
# get batch
transitions = self.replay_buffer.sample(self.batch_size)
# Process batch of (state, action, reward, next_state)
states = [transitions[ii][0] for ii in range(self.batch_size)]
actions = [transitions[ii][1] for ii in range(self.batch_size)]
rewards = [transitions[ii][2] for ii in range(self.batch_size)]
# Attention: next_state is None when the previous state is terminal. We handle this using a mask.
next_states = [transitions[ii][3] for ii in range(self.batch_size) if transitions[ii][3] is not None ]
mask = [transitions[ii][3] is not None for ii in range(self.batch_size)]
# Q(s_i, a_i)
values = self.nn.predict(states) # TODO select values using actions
# max_a Q(s_{i+1}, a)
values_next_states = np.zeros(self.batch_size)
mask_feat = self.target_network.predict(next_states).argmax(axis=1)
values_next_states[mask] = self.target_network.predict(next_states).max(axis=1)
# targets y_i
targets = rewards + self.gamma*values_next_states
# print(mask_train.shape)
targets2d = np.zeros(values.shape)
# for i in range(self.batch_size) :
# targets2[i,mask_train[i]] =targets[i]
# targets2[i,1-mask_train[i]] = values[i,1-mask_train[i]]
# Loss function / forward pass
# TODO only select one col (using actions)
targets = np.repeat(targets.reshape(-1,1),values.shape[1],axis=1)
loss = self.nn.forward(np.array(states), targets)
# Optimize the model / Backprop
self.nn.backprop(targets)
self.optimizer.update(nn=self.nn,t=ep)
return loss
def train(self,nn,env,optimizer=Adam(learning_rate=0.1)):
'''
Parameters
-----------
nn : Neural netwok,
neural network to train, need to have a predit, forward and backprop method
env : gym-like environment,
environment to train on
optimizer : optimizer,
Use to optimize the nn, must have an update method that update the weights of the nn
'''
self.nn = nn
self.target_network = deepcopy(self.nn)
self.env = env
self.optimizer = optimizer
state = self.env.reset()
ep = 0
total_time = 0
if hasattr(self.optimizer,'init_layers'):
self.optimizer.init_layers(self.nn)
while ep < self.n_episode:
action = self._choose_action(state, self.epsilon)
# take action and update replay buffer and networks
next_state, reward, done, _ = self.env.step(action)
_ = self._update(state, action, reward, next_state, done,ep)
# update state
state = next_state
# end episode if done
if done:
state = self.env.reset()
ep += 1
if ( (ep+1)% self.eval_every == 0):
rewards = self._eval_dqn()
print("episode =", ep+1, ", reward = ", np.mean(rewards))
if np.mean(rewards) >= self.reward_threshold:
break
# update target network
if ep % self.update_target_every == 0:
self.target_network = deepcopy(self.nn)
total_time += 1
if hasattr(self.nn,'clear_layer_training'):
self.nn.clear_layer_training(self.nn)
rewards = self._eval_dqn(20)
print("mean reward after training = ", np.mean(rewards))