|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Helium atom\n", |
| 9 | + "\n", |
| 10 | + "Once we have a solver for the Hydrogen Atom (1 atom), the next level off difficulty is the Helium atom (2 atoms). Here we'll show how\n", |
| 11 | + "to make and SCF for the Helium atom within the framework of Hartree–Fock." |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "from vampyr import vampyr3d as vp\n", |
| 21 | + "import numpy as np\n", |
| 22 | + "\n", |
| 23 | + "def laplace_operator(D, f_tree):\n", |
| 24 | + " return D(D(f_tree, 0), 0) + D(D(f_tree, 1), 1) + D(D(f_tree, 2), 2)\n", |
| 25 | + "\n", |
| 26 | + "def calculate_energy(phi_tree, V_tree):\n", |
| 27 | + " mra = phi_tree.MRA()\n", |
| 28 | + " d_oper = vp.ABGVDerivative(mra, 0.5, 0.5)\n", |
| 29 | + " return -0.5*vp.dot(laplace_operator(d_oper, phi_tree), phi_tree) + vp.dot(phi_tree, V_tree*phi_tree)\n", |
| 30 | + "\n", |
| 31 | + "def couloumb_potential(prec, phi_tree):\n", |
| 32 | + " mra = phi_tree.MRA()\n", |
| 33 | + " P = vp.PoissonOperator(mra, prec)\n", |
| 34 | + " return P(4.0*np.pi*phi_tree*phi_tree)\n", |
| 35 | + "\n", |
| 36 | + "# Analytic nuclear potential: f_nuc(r) = Z/|r|\n", |
| 37 | + "def f_nuc(r):\n", |
| 38 | + " Z = 2.0 # Nuclear charge\n", |
| 39 | + " R = np.sqrt(r[0]**2 + r[1]**2 + r[2]**2)\n", |
| 40 | + " return -Z / R\n", |
| 41 | + "\n", |
| 42 | + "# Analytic guess for wavefunction: f_phi(r) = exp(-r^2)\n", |
| 43 | + "def f_phi(r):\n", |
| 44 | + " R2 = r[0]**2 + r[1]**2 + r[2]**2\n", |
| 45 | + " return np.exp(-R2)\n", |
| 46 | + "\n", |
| 47 | + "# Set target precision\n", |
| 48 | + "precision = 1.0e-5\n", |
| 49 | + "\n", |
| 50 | + "# Define MRA basis and computational domain\n", |
| 51 | + "k = 5 # Polynomial order of MRA basis\n", |
| 52 | + "world = [-20, 20] # Computational domain [-L,L]^3 (a.u.)\n", |
| 53 | + "MRA = vp.MultiResolutionAnalysis(order=k, box=world)\n", |
| 54 | + "\n", |
| 55 | + "# Define projector onto the MRA basis\n", |
| 56 | + "P_mra = vp.ScalingProjector(mra=MRA, prec=precision)\n", |
| 57 | + "\n", |
| 58 | + "# Initialize the calculation\n", |
| 59 | + "phi_n = P_mra(f_phi) # Project analytic guess for wavefunction onto MRA\n", |
| 60 | + "phi_n.normalize() # Normalize the wavefunction guess\n", |
| 61 | + "V_n = P_mra(f_nuc) # Project analytic nuclear potential onto MRA\n", |
| 62 | + "J = couloumb_potential(precision, phi_n)\n", |
| 63 | + "E_n = calculate_energy(phi_n, V_n + J)" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# Loop parameters\n", |
| 73 | + "iteration = 0 # Iteration counter\n", |
| 74 | + "max_iter = 30 # Maximum iterations \n", |
| 75 | + "thrs = precision # -1 # Convergence requirement. Set to -1 if you wish to limit using max_iter\n", |
| 76 | + "update = 1.0 # Initialize error measure (norm of wavefunction update)\n", |
| 77 | + "# Minimization loop\n", |
| 78 | + "while (update > thrs):\n", |
| 79 | + " if iteration > max_iter-1:\n", |
| 80 | + " break\n", |
| 81 | + " # Build Helmholtz operator from current energy\n", |
| 82 | + " mu = np.sqrt(-2*E_n)\n", |
| 83 | + " G = vp.HelmholtzOperator(mra=MRA, exp=mu, prec=precision)\n", |
| 84 | + " \n", |
| 85 | + " # Apply Helmholtz operator\n", |
| 86 | + " phi_np1 = -2*G((V_n + J)*phi_n)\n", |
| 87 | + " \n", |
| 88 | + " # Compute wavefunction and energy update\n", |
| 89 | + " d_phi_n = phi_np1 - phi_n\n", |
| 90 | + " update = d_phi_n.norm()\n", |
| 91 | + "\n", |
| 92 | + " # Prepare for next iteration\n", |
| 93 | + " phi_n = phi_np1\n", |
| 94 | + " phi_n.normalize()\n", |
| 95 | + " J = couloumb_potential(precision, phi_n)\n", |
| 96 | + " E_n = calculate_energy(phi_n, V_n + J)\n", |
| 97 | + "\n", |
| 98 | + " # Collect output\n", |
| 99 | + " print(iteration, \" | E:\", E_n, \" | d_phi:\", update)\n", |
| 100 | + " iteration += 1\n", |
| 101 | + "E_tot = 2.0*E_n - vp.dot(phi_n*phi_n, couloumb_potential(precision, phi_n))" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [] |
| 110 | + } |
| 111 | + ], |
| 112 | + "metadata": { |
| 113 | + "kernelspec": { |
| 114 | + "display_name": "documentation", |
| 115 | + "language": "python", |
| 116 | + "name": "python3" |
| 117 | + }, |
| 118 | + "language_info": { |
| 119 | + "codemirror_mode": { |
| 120 | + "name": "ipython", |
| 121 | + "version": 3 |
| 122 | + }, |
| 123 | + "file_extension": ".py", |
| 124 | + "mimetype": "text/x-python", |
| 125 | + "name": "python", |
| 126 | + "nbconvert_exporter": "python", |
| 127 | + "pygments_lexer": "ipython3", |
| 128 | + "version": "3.10.8" |
| 129 | + }, |
| 130 | + "orig_nbformat": 4, |
| 131 | + "vscode": { |
| 132 | + "interpreter": { |
| 133 | + "hash": "a875265825dca88dc0cdca05b35ae15709f7b78b2bf941fac513dcdaf1078523" |
| 134 | + } |
| 135 | + } |
| 136 | + }, |
| 137 | + "nbformat": 4, |
| 138 | + "nbformat_minor": 2 |
| 139 | +} |
0 commit comments