|
24 | 24 | "source": [ |
25 | 25 | "import random\n", |
26 | 26 | "\n", |
27 | | - "from meteole import AromeForecast" |
| 27 | + "from meteole import PiafForecast # or ArpegeForecast, PiafForecast, AromePIForecast" |
28 | 28 | ] |
29 | 29 | }, |
30 | 30 | { |
|
59 | 59 | "cell_type": "markdown", |
60 | 60 | "metadata": {}, |
61 | 61 | "source": [ |
62 | | - "## Init Client Arome\n", |
63 | | - "\n", |
64 | | - "To get Arome Forecast, import `AromeForecast`" |
| 62 | + "## Init Client" |
65 | 63 | ] |
66 | 64 | }, |
67 | 65 | { |
|
71 | 69 | "outputs": [], |
72 | 70 | "source": [ |
73 | 71 | "# init client\n", |
74 | | - "arome = AromeForecast(application_id=APP_ID)" |
| 72 | + "client = PiafForecast(application_id=APP_ID) # or ArpegeForecast, PiafForecast, AromePIForecast" |
75 | 73 | ] |
76 | 74 | }, |
77 | 75 | { |
|
81 | 79 | "outputs": [], |
82 | 80 | "source": [ |
83 | 81 | "# pick a random indicator\n", |
84 | | - "random_indicator = random.choice(arome.INDICATORS)\n", |
| 82 | + "random_indicator = random.choice(client.INDICATORS)\n", |
85 | 83 | "print(f\"Indicator: {random_indicator}\")" |
86 | 84 | ] |
87 | 85 | }, |
|
91 | 89 | "metadata": {}, |
92 | 90 | "outputs": [], |
93 | 91 | "source": [ |
94 | | - "arome.INDICATORS" |
| 92 | + "client.INDICATORS" |
95 | 93 | ] |
96 | 94 | }, |
97 | 95 | { |
|
107 | 105 | "metadata": {}, |
108 | 106 | "outputs": [], |
109 | 107 | "source": [ |
110 | | - "arome.get_coverage(random_indicator)" |
| 108 | + "client.get_coverage(random_indicator)" |
111 | 109 | ] |
112 | 110 | }, |
113 | 111 | { |
|
126 | 124 | "outputs": [], |
127 | 125 | "source": [ |
128 | 126 | "# First parameters to create a coverage_id (run and interval)\n", |
129 | | - "df_capabilities = arome.get_capabilities()\n", |
| 127 | + "df_capabilities = client.get_capabilities()\n", |
130 | 128 | "\n", |
131 | 129 | "list_run_valid = list(df_capabilities[df_capabilities[\"indicator\"] == random_indicator][\"run\"].unique())\n", |
132 | 130 | "list_interval_valid = list(df_capabilities[df_capabilities[\"indicator\"] == random_indicator][\"interval\"].unique())\n", |
|
140 | 138 | "outputs": [], |
141 | 139 | "source": [ |
142 | 140 | "# Then other parameters from a coverage_id\n", |
143 | | - "description = arome.get_coverage_description(list_coverage_id_valid[0])\n", |
| 141 | + "description = client.get_coverage_description(list_coverage_id_valid[0])\n", |
144 | 142 | "\n", |
145 | 143 | "list_forecast_horizons_valid = description.get(\"forecast_horizons\", [])\n", |
146 | 144 | "list_height_valid = description.get(\"heights\", [])\n", |
147 | 145 | "list_pressure_id_valid = description.get(\"pressures\", [])" |
148 | 146 | ] |
149 | | - }, |
150 | | - { |
151 | | - "cell_type": "code", |
152 | | - "execution_count": null, |
153 | | - "metadata": {}, |
154 | | - "outputs": [], |
155 | | - "source": [] |
156 | 147 | } |
157 | 148 | ], |
158 | 149 | "metadata": { |
|
171 | 162 | "name": "python", |
172 | 163 | "nbconvert_exporter": "python", |
173 | 164 | "pygments_lexer": "ipython3", |
174 | | - "version": "3.11.11" |
| 165 | + "version": "undefined.undefined.undefined" |
175 | 166 | }, |
176 | 167 | "toc": { |
177 | 168 | "base_numbering": 1, |
|
0 commit comments