Skip to content

Commit 724ae28

Browse files
authored
Merge pull request #86 from LogicNet-Subnet/mainnet
Mainnet Integration
2 parents fa6930c + 730ed66 commit 724ae28

File tree

2 files changed

+16
-3
lines changed

2 files changed

+16
-3
lines changed

docs/VALIDATOR.md

Lines changed: 14 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -63,8 +63,20 @@ This setup allows you to run the Validator locally by hosting a vLLM server. Whi
6363
. vllm/bin/activate
6464
pm2 start "vllm serve Qwen/Qwen2.5-7B-Instruct --port 8000 --host 0.0.0.0" --name "sn35-vllm"
6565
```
66-
*Adjust the model, port, and host as needed.*
67-
eg. include this if the model fail to start `--max-model-len 16384 --gpu-memory-utilization 0.95`
66+
- If you want to run larger models on GPUs with less VRAM, there are several techniques you can use to optimize GPU memory utilization:
67+
- You can adjust the GPU memory utilization to maximize the available memory by using a flag like `--gpu_memory_utilization`. This allows the model to use a specified percentage of GPU memory.
68+
```bash
69+
pm2 start "vllm serve Qwen/Qwen2.5-7B-Instruct --gpu_memory_utilization 0.95 --port 8000 --host 0.0.0.0" --name "sn35-vllm"
70+
# This command sets the model to use 95% of the available GPU memory.
71+
```
72+
- Using mixed precision (FP16) instead of full precision (FP32) reduces the amount of memory required to store model weights, which can significantly lower VRAM usage.
73+
```bash
74+
pm2 start "vllm serve Qwen/Qwen2.5-7B-Instruct --precision fp16 --gpu_memory_utilization 0.95 --port 8000 --host 0.0.0.0" --name "sn35-vllm"
75+
```
76+
- If you have multiple GPUs, you can shard the model across them to distribute the memory load.
77+
```bash
78+
pm2 start "vllm serve Qwen/Qwen2.5-7B-Instruct --shard --port 8000 --host 0.0.0.0" --name "sn35-vllm"
79+
```
6880

6981
---
7082

requirements.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
1-
bittensor==8.5.1
1+
bittensor==9.0.0
2+
bittensor-cli==9.0.0
23
Pillow==10.2.0
34
PyYAML==6.0.1
45
setuptools==70.0.0

0 commit comments

Comments
 (0)