|
17 | 17 | "tags": []
|
18 | 18 | },
|
19 | 19 | "source": [
|
20 |
| - "# Labelpandas - The Labelbox <> Pandas Connector\n", |
21 |
| - "**Instantly Load CSVs (and other Tables) into Labelbox**\n", |
| 20 | + "# LabelPandas - The Labelbox <> Pandas Connector\n", |
| 21 | + "**Instantly load CSVs (and other tables) into Labelbox**\n", |
22 | 22 | "\n",
|
23 | 23 | "---\n",
|
24 | 24 | "\n",
|
25 |
| - "This notebook is used to go over the basic use of the Labelpandas Python SDK. \n", |
| 25 | + "This notebook demonstrates the basic use of the LabelPandas Python SDK. \n", |
26 | 26 | "\n",
|
27 | 27 | "**Pandas** is a Python library that helps in loading and manipulating CSVs and tabular data more efficiently. It is one of the most widely used Python libraries in the world.\n",
|
28 | 28 | "\n",
|
29 |
| - "**Labelpandas** incorporates both Labelbox and Pandas to make uploading CSVs and tabular data to Labelbox straightforward. It can handle both local file assets as well as cloud-hosted assets. " |
| 29 | + "**LabelPandas** incorporates both Labelbox and Pandas to make uploading CSVs and tabular data to Labelbox straightforward. It can handle both local file assets as well as cloud-hosted assets. " |
30 | 30 | ]
|
31 | 31 | },
|
32 | 32 | {
|
|
54 | 54 | "id": "1dfe1eae-e28f-4928-9058-796d097f38cc",
|
55 | 55 | "metadata": {},
|
56 | 56 | "source": [
|
57 |
| - "# Set up Labelpandas Client" |
| 57 | + "## Set up LabelPandas Client" |
58 | 58 | ]
|
59 | 59 | },
|
60 | 60 | {
|
|
84 | 84 | "source": [
|
85 | 85 | "# Load CSV\n",
|
86 | 86 | "\n",
|
87 |
| - "To upload data rows from a csv, your csv **must** have the following:\n", |
| 87 | + "To upload data rows from a `.csv`, your .`csv` **must** have the following:\n", |
88 | 88 | "\n",
|
89 |
| - "- Column consisting of your **row data** as a string value - this pertains to either your asset URL (pointing to cloud storage) or a local file path\n", |
| 89 | + "- Column consisting of your **row data** as a string value - this pertains to either your asset URL (pointing to cloud storage) or a local file path.\n", |
90 | 90 | " \n",
|
91 |
| - "- Column consisting of your **global key** as a string value - this is an externally facing ID that must be unique (Labelbox enforces it)\n", |
92 |
| - " - If you attempt to upload a data row with an existing global key, it will either auto-generate a suffix such as \"_1\" or it will skip it entirely\n", |
| 91 | + "- Column consisting of your **global key** as a string value - this is an externally facing ID that must be unique (Labelbox enforces uniqueness).\n", |
| 92 | + " - If you attempt to upload a data row with an existing global key, it will either auto-generate a suffix such as \"_1\" or it will skip it entirely.\n", |
93 | 93 | " \n",
|
94 |
| - "**To upload data rows with metadta, your csv must have one column per metadata field name**. Labelpandas matches the column names to Labelbox metadata names when uploading metadata." |
| 94 | + "**To upload data rows with metadata, your `.csv` must have one column per metadata field name**. LabelPandas matches the column names to Labelbox metadata names when uploading metadata." |
95 | 95 | ]
|
96 | 96 | },
|
97 | 97 | {
|
|
218 | 218 | "id": "8031341e-b42f-4838-9a8a-ad06271fdcdf",
|
219 | 219 | "metadata": {},
|
220 | 220 | "source": [
|
221 |
| - "# Create a `metadata_index`\n", |
| 221 | + "## Create a `metadata_index`\n", |
222 | 222 | "\n",
|
223 |
| - "* Your metadata_index is a dictionary where {key=`column_name` : value=`metadata_field_type`}\n", |
| 223 | + "* Your `metadata_index` is a dictionary where `{key=column_name : value=metadata_field_type`}\n", |
224 | 224 | " * `column_name` must correspond to Labelbox metadata field names. Labelpandas uses these names to sync data.\n",
|
225 |
| - " * `metadata_field_type` must be one of the following string values: **\"datetime\" \"enum\" \"string\" \"number\"**" |
| 225 | + " * `metadata_field_type` must be one of the following string values: `datetime` | `enum` | `string` | `number`" |
226 | 226 | ]
|
227 | 227 | },
|
228 | 228 | {
|
|
242 | 242 | "id": "e7e2121e-a3db-4734-b034-77f365a1c20a",
|
243 | 243 | "metadata": {},
|
244 | 244 | "source": [
|
245 |
| - "# Get or Create a Labelbox Dataset\n", |
| 245 | + "## Get or create a Labelbox dataset\n", |
246 | 246 | "\n",
|
247 |
| - "* Labelpandas will create data rows for you in existing datasets. If you don't have a dataset, create one." |
| 247 | + "* LabelPandas will create data rows for you in existing datasets. If you don't have a dataset, create one." |
248 | 248 | ]
|
249 | 249 | },
|
250 | 250 | {
|
|
274 | 274 | "id": "c6ad8272-1eb2-4ac3-ae44-072c40675646",
|
275 | 275 | "metadata": {},
|
276 | 276 | "source": [
|
277 |
| - "# Upload Data Rows from CSV to Labelbox\n", |
| 277 | + "## Upload Data Rows from CSV to Labelbox\n", |
278 | 278 | "\n",
|
279 | 279 | "**`client.create_data_rows_from_table()`** has the following arguments:\n",
|
280 | 280 | "```\n",
|
|
288 | 288 | "skip_duplicates : Optional (bool) - If True, will skip duplicate global_keys, otherwise will generate a unique global_key with a suffix \n",
|
289 | 289 | "verbose : Optional (bool) - If True, prints information about code execution\n",
|
290 | 290 | "```\n",
|
291 |
| - "This function will return a list of errors, if any" |
| 291 | + "This function will return a list of errors, if any." |
292 | 292 | ]
|
293 | 293 | },
|
294 | 294 | {
|
|
0 commit comments