|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "db768cda", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "<td>\n", |
| 9 | + " <a target=\"_blank\" href=\"https://labelbox.com\" ><img src=\"https://labelbox.com/blog/content/images/2021/02/logo-v4.svg\" width=256/></a>\n", |
| 10 | + "</td>" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "cb5611d0", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "<td>\n", |
| 19 | + "<a href=\"https://colab.research.google.com/github/Labelbox/labelbox-python/blob/develop/examples/model_assisted_labeling/video_mal.ipynb\" target=\"_blank\"><img\n", |
| 20 | + "src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n", |
| 21 | + "</td>\n", |
| 22 | + "\n", |
| 23 | + "<td>\n", |
| 24 | + "<a href=\"https://github.com/Labelbox/labelbox-python/tree/develop/examples/model_assisted_labeling/video_mal.ipynb\" target=\"_blank\"><img\n", |
| 25 | + "src=\"https://img.shields.io/badge/GitHub-100000?logo=github&logoColor=white\" alt=\"GitHub\"></a>\n", |
| 26 | + "</td>" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "id": "stupid-court", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "# Video MAL" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "id": "intellectual-idaho", |
| 40 | + "metadata": {}, |
| 41 | + "source": [ |
| 42 | + "* Upload model inferences for video tasks\n", |
| 43 | + "* Support types\n", |
| 44 | + " * bounding box" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 1, |
| 50 | + "id": "voluntary-minister", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "!pip install -q labelbox" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 2, |
| 60 | + "id": "committed-richards", |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "import os\n", |
| 65 | + "import uuid\n", |
| 66 | + "from io import BytesIO\n", |
| 67 | + "from typing import Dict, Any, Tuple\n", |
| 68 | + "\n", |
| 69 | + "from labelbox import Client, LabelingFrontend\n", |
| 70 | + "from labelbox.schema.ontology import OntologyBuilder, Tool, Classification, Option" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "markdown", |
| 75 | + "id": "c8c876b7", |
| 76 | + "metadata": {}, |
| 77 | + "source": [ |
| 78 | + "# API Key and Client\n", |
| 79 | + "Provide a valid api key below in order to properly connect to the Labelbox Client." |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": 5, |
| 85 | + "id": "affecting-myanmar", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "# Add your api key\n", |
| 90 | + "API_KEY = None\n", |
| 91 | + "client = Client(api_key=API_KEY)" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "markdown", |
| 96 | + "id": "blessed-venture", |
| 97 | + "metadata": {}, |
| 98 | + "source": [ |
| 99 | + "### Project Setup" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": 6, |
| 105 | + "id": "suburban-crowd", |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "# We want to try out a few different tools here.\n", |
| 110 | + "ontology_builder = OntologyBuilder(\n", |
| 111 | + " tools=[Tool(tool=Tool.Type.BBOX, name=\"jellyfish\")])" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": 7, |
| 117 | + "id": "modern-program", |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [], |
| 120 | + "source": [ |
| 121 | + "# Lets setup a project to label\n", |
| 122 | + "# Note see Ontology, Project, and Project_setup notebooks for more information on this section.\n", |
| 123 | + "project = client.create_project(name=\"video_mal_project\")\n", |
| 124 | + "dataset = client.create_dataset(name=\"video_mal_dataset\")\n", |
| 125 | + "dataset.create_data_row(\n", |
| 126 | + " row_data=\n", |
| 127 | + " \"https://storage.labelbox.com/cjhfn5y6s0pk507024nz1ocys%2Fb8837f3b-b071-98d9-645e-2e2c0302393b-jellyfish2-100-110.mp4\"\n", |
| 128 | + ")\n", |
| 129 | + "editor = next(\n", |
| 130 | + " client.get_labeling_frontends(where=LabelingFrontend.name == \"Editor\"))\n", |
| 131 | + "project.setup(editor, ontology_builder.asdict())\n", |
| 132 | + "project.datasets.connect(dataset)" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "markdown", |
| 137 | + "id": "portable-grenada", |
| 138 | + "metadata": {}, |
| 139 | + "source": [ |
| 140 | + "#### Grab featureSchemaIds" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 8, |
| 146 | + "id": "abstract-fifteen", |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [ |
| 149 | + { |
| 150 | + "name": "stdout", |
| 151 | + "output_type": "stream", |
| 152 | + "text": [ |
| 153 | + "{'jellyfish': 'cky3dt2lja37d0z9t26wf3qo5'}\n" |
| 154 | + ] |
| 155 | + } |
| 156 | + ], |
| 157 | + "source": [ |
| 158 | + "# When we created a project with the ontology defined above, all of the ids were assigned.\n", |
| 159 | + "# So lets reconstruct the ontology builder with all of the ids.\n", |
| 160 | + "ontology = ontology_builder.from_project(project)\n", |
| 161 | + "# We want all of the feature schemas to be easily accessible by name.\n", |
| 162 | + "schema_lookup = {tool.name: tool.feature_schema_id for tool in ontology.tools}\n", |
| 163 | + "print(schema_lookup)" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "id": "portuguese-arthur", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "## Import Format\n", |
| 172 | + "\n", |
| 173 | + "* [Documentation](https://docs.labelbox.com/docs/bounding-box-json)\n", |
| 174 | + "\n", |
| 175 | + "\n", |
| 176 | + "```\n", |
| 177 | + "Each row of the import is a unique instance\n", |
| 178 | + "\n", |
| 179 | + "schemaId: <featureSchemaId>\n", |
| 180 | + "dataRow:\n", |
| 181 | + " id: <dataRowId>\n", |
| 182 | + "Instance:\n", |
| 183 | + " [Segments]:\n", |
| 184 | + " [KeyFrames]:\n", |
| 185 | + " frame:\n", |
| 186 | + " bbox:\n", |
| 187 | + " top:\n", |
| 188 | + " bottom:\n", |
| 189 | + " height:\n", |
| 190 | + " width:\n", |
| 191 | + "```\n", |
| 192 | + "\n", |
| 193 | + "**segments**: A segment represents a continuous section where an object is visible. If an instance disappears then the segment ends. If it re-appears, a new segment is created.\n", |
| 194 | + "\n", |
| 195 | + "**keyframes**: Key frames identify the location of an instance. Between keyframes, the location of the instance is interpolated.\n", |
| 196 | + "\n", |
| 197 | + "**bbox**: The coordinates of the bounding box" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": 9, |
| 203 | + "id": "5fc417c5", |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [], |
| 206 | + "source": [ |
| 207 | + "segments = [{\n", |
| 208 | + " \"keyframes\": [{\n", |
| 209 | + " \"frame\": 1,\n", |
| 210 | + " \"bbox\": {\n", |
| 211 | + " \"top\": 80,\n", |
| 212 | + " \"left\": 80,\n", |
| 213 | + " \"height\": 80,\n", |
| 214 | + " \"width\": 80\n", |
| 215 | + " }\n", |
| 216 | + " }, {\n", |
| 217 | + " \"frame\": 20,\n", |
| 218 | + " \"bbox\": {\n", |
| 219 | + " \"top\": 125,\n", |
| 220 | + " \"left\": 125,\n", |
| 221 | + " \"height\": 200,\n", |
| 222 | + " \"width\": 300\n", |
| 223 | + " }\n", |
| 224 | + " }]\n", |
| 225 | + "}, {\n", |
| 226 | + " \"keyframes\": [{\n", |
| 227 | + " \"frame\": 27,\n", |
| 228 | + " \"bbox\": {\n", |
| 229 | + " \"top\": 80,\n", |
| 230 | + " \"left\": 50,\n", |
| 231 | + " \"height\": 80,\n", |
| 232 | + " \"width\": 50\n", |
| 233 | + " }\n", |
| 234 | + " }]\n", |
| 235 | + "}]" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "markdown", |
| 240 | + "id": "convertible-entry", |
| 241 | + "metadata": {}, |
| 242 | + "source": [ |
| 243 | + "##### Create helper functions to make this much easier" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": 10, |
| 249 | + "id": "developing-beauty", |
| 250 | + "metadata": {}, |
| 251 | + "outputs": [], |
| 252 | + "source": [ |
| 253 | + "def create_video_bbox_ndjson(datarow_id: str, schema_id: str,\n", |
| 254 | + " segments: Dict[str, Any]) -> Dict[str, Any]:\n", |
| 255 | + " return {\n", |
| 256 | + " \"uuid\": str(uuid.uuid4()),\n", |
| 257 | + " \"schemaId\": schema_id,\n", |
| 258 | + " \"dataRow\": {\n", |
| 259 | + " \"id\": datarow_id\n", |
| 260 | + " },\n", |
| 261 | + " \"segments\": segments\n", |
| 262 | + " }" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": 11, |
| 268 | + "id": "asian-savings", |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [], |
| 271 | + "source": [ |
| 272 | + "uploads = []\n", |
| 273 | + "\n", |
| 274 | + "for data_row in dataset.data_rows():\n", |
| 275 | + " uploads.append(\n", |
| 276 | + " create_video_bbox_ndjson(data_row.uid, schema_lookup['jellyfish'],\n", |
| 277 | + " segments))" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "markdown", |
| 282 | + "id": "perfect-seafood", |
| 283 | + "metadata": {}, |
| 284 | + "source": [ |
| 285 | + "### Upload the annotations" |
| 286 | + ] |
| 287 | + }, |
| 288 | + { |
| 289 | + "cell_type": "code", |
| 290 | + "execution_count": 12, |
| 291 | + "id": "entire-community", |
| 292 | + "metadata": {}, |
| 293 | + "outputs": [], |
| 294 | + "source": [ |
| 295 | + "# Let's upload!\n", |
| 296 | + "# Validate must be set to false for video bounding boxes\n", |
| 297 | + "upload_task = project.upload_annotations(name=f\"upload-job-{uuid.uuid4()}\",\n", |
| 298 | + " annotations=uploads,\n", |
| 299 | + " validate=False)" |
| 300 | + ] |
| 301 | + }, |
| 302 | + { |
| 303 | + "cell_type": "code", |
| 304 | + "execution_count": 13, |
| 305 | + "id": "hollywood-faculty", |
| 306 | + "metadata": {}, |
| 307 | + "outputs": [ |
| 308 | + { |
| 309 | + "name": "stdout", |
| 310 | + "output_type": "stream", |
| 311 | + "text": [ |
| 312 | + "[]\n" |
| 313 | + ] |
| 314 | + } |
| 315 | + ], |
| 316 | + "source": [ |
| 317 | + "# Wait for upload to finish (Will take up to five minutes)\n", |
| 318 | + "upload_task.wait_until_done()\n", |
| 319 | + "# Review the upload status\n", |
| 320 | + "print(upload_task.errors)" |
| 321 | + ] |
| 322 | + } |
| 323 | + ], |
| 324 | + "metadata": { |
| 325 | + "kernelspec": { |
| 326 | + "display_name": "Python 3", |
| 327 | + "language": "python", |
| 328 | + "name": "python3" |
| 329 | + }, |
| 330 | + "language_info": { |
| 331 | + "codemirror_mode": { |
| 332 | + "name": "ipython", |
| 333 | + "version": 3 |
| 334 | + }, |
| 335 | + "file_extension": ".py", |
| 336 | + "mimetype": "text/x-python", |
| 337 | + "name": "python", |
| 338 | + "nbconvert_exporter": "python", |
| 339 | + "pygments_lexer": "ipython3", |
| 340 | + "version": "3.8.8" |
| 341 | + } |
| 342 | + }, |
| 343 | + "nbformat": 4, |
| 344 | + "nbformat_minor": 5 |
| 345 | +} |
0 commit comments