|
1 | 1 | import json
|
2 | 2 |
|
| 3 | +from labelbox.data.annotation_types.data.generic_data_row_data import ( |
| 4 | + GenericDataRowData, |
| 5 | +) |
| 6 | +from labelbox.data.annotation_types.metrics.confusion_matrix import ( |
| 7 | + ConfusionMatrixMetric, |
| 8 | +) |
3 | 9 | from labelbox.data.serialization.ndjson.converter import NDJsonConverter
|
| 10 | +from labelbox.types import ( |
| 11 | + Label, |
| 12 | + ScalarMetric, |
| 13 | + ScalarMetricAggregation, |
| 14 | + ConfusionMatrixAggregation, |
| 15 | +) |
4 | 16 |
|
5 | 17 |
|
6 | 18 | def test_metric():
|
7 | 19 | with open("tests/data/assets/ndjson/metric_import.json", "r") as file:
|
8 | 20 | data = json.load(file)
|
9 | 21 |
|
10 |
| - label_list = list(NDJsonConverter.deserialize(data)) |
11 |
| - reserialized = list(NDJsonConverter.serialize(label_list)) |
12 |
| - assert reserialized == data |
| 22 | + labels = [ |
| 23 | + Label( |
| 24 | + data=GenericDataRowData( |
| 25 | + uid="ckrmdnqj4000007msh9p2a27r", |
| 26 | + ), |
| 27 | + annotations=[ |
| 28 | + ScalarMetric( |
| 29 | + value=0.1, |
| 30 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672"}, |
| 31 | + aggregation=ScalarMetricAggregation.ARITHMETIC_MEAN, |
| 32 | + ) |
| 33 | + ], |
| 34 | + ) |
| 35 | + ] |
| 36 | + |
| 37 | + res = list(NDJsonConverter.serialize(labels)) |
| 38 | + assert res == data |
13 | 39 |
|
14 | 40 |
|
15 | 41 | def test_custom_scalar_metric():
|
16 |
| - with open( |
17 |
| - "tests/data/assets/ndjson/custom_scalar_import.json", "r" |
18 |
| - ) as file: |
19 |
| - data = json.load(file) |
| 42 | + data = [ |
| 43 | + { |
| 44 | + "uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672", |
| 45 | + "dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"}, |
| 46 | + "metricValue": 0.1, |
| 47 | + "metricName": "custom_iou", |
| 48 | + "featureName": "sample_class", |
| 49 | + "subclassName": "sample_subclass", |
| 50 | + "aggregation": "SUM", |
| 51 | + }, |
| 52 | + { |
| 53 | + "uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673", |
| 54 | + "dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"}, |
| 55 | + "metricValue": 0.1, |
| 56 | + "metricName": "custom_iou", |
| 57 | + "featureName": "sample_class", |
| 58 | + "aggregation": "SUM", |
| 59 | + }, |
| 60 | + { |
| 61 | + "uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674", |
| 62 | + "dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"}, |
| 63 | + "metricValue": {0.1: 0.1, 0.2: 0.5}, |
| 64 | + "metricName": "custom_iou", |
| 65 | + "aggregation": "SUM", |
| 66 | + }, |
| 67 | + ] |
| 68 | + |
| 69 | + labels = [ |
| 70 | + Label( |
| 71 | + data=GenericDataRowData( |
| 72 | + uid="ckrmdnqj4000007msh9p2a27r", |
| 73 | + ), |
| 74 | + annotations=[ |
| 75 | + ScalarMetric( |
| 76 | + value=0.1, |
| 77 | + feature_name="sample_class", |
| 78 | + subclass_name="sample_subclass", |
| 79 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672"}, |
| 80 | + metric_name="custom_iou", |
| 81 | + aggregation=ScalarMetricAggregation.SUM, |
| 82 | + ), |
| 83 | + ScalarMetric( |
| 84 | + value=0.1, |
| 85 | + feature_name="sample_class", |
| 86 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673"}, |
| 87 | + metric_name="custom_iou", |
| 88 | + aggregation=ScalarMetricAggregation.SUM, |
| 89 | + ), |
| 90 | + ScalarMetric( |
| 91 | + value={"0.1": 0.1, "0.2": 0.5}, |
| 92 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674"}, |
| 93 | + metric_name="custom_iou", |
| 94 | + aggregation=ScalarMetricAggregation.SUM, |
| 95 | + ), |
| 96 | + ], |
| 97 | + ) |
| 98 | + ] |
| 99 | + |
| 100 | + res = list(NDJsonConverter.serialize(labels)) |
20 | 101 |
|
21 |
| - label_list = list(NDJsonConverter.deserialize(data)) |
22 |
| - reserialized = list(NDJsonConverter.serialize(label_list)) |
23 |
| - assert json.dumps(reserialized, sort_keys=True) == json.dumps( |
24 |
| - data, sort_keys=True |
25 |
| - ) |
| 102 | + assert res == data |
26 | 103 |
|
27 | 104 |
|
28 | 105 | def test_custom_confusion_matrix_metric():
|
29 |
| - with open( |
30 |
| - "tests/data/assets/ndjson/custom_confusion_matrix_import.json", "r" |
31 |
| - ) as file: |
32 |
| - data = json.load(file) |
| 106 | + data = [ |
| 107 | + { |
| 108 | + "uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672", |
| 109 | + "dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"}, |
| 110 | + "metricValue": (1, 1, 2, 3), |
| 111 | + "metricName": "50%_iou", |
| 112 | + "featureName": "sample_class", |
| 113 | + "subclassName": "sample_subclass", |
| 114 | + "aggregation": "CONFUSION_MATRIX", |
| 115 | + }, |
| 116 | + { |
| 117 | + "uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673", |
| 118 | + "dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"}, |
| 119 | + "metricValue": (0, 1, 2, 5), |
| 120 | + "metricName": "50%_iou", |
| 121 | + "featureName": "sample_class", |
| 122 | + "aggregation": "CONFUSION_MATRIX", |
| 123 | + }, |
| 124 | + { |
| 125 | + "uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674", |
| 126 | + "dataRow": {"id": "ckrmdnqj4000007msh9p2a27r"}, |
| 127 | + "metricValue": {0.1: (0, 1, 2, 3), 0.2: (5, 3, 4, 3)}, |
| 128 | + "metricName": "50%_iou", |
| 129 | + "aggregation": "CONFUSION_MATRIX", |
| 130 | + }, |
| 131 | + ] |
| 132 | + |
| 133 | + labels = [ |
| 134 | + Label( |
| 135 | + data=GenericDataRowData( |
| 136 | + uid="ckrmdnqj4000007msh9p2a27r", |
| 137 | + ), |
| 138 | + annotations=[ |
| 139 | + ConfusionMatrixMetric( |
| 140 | + value=(1, 1, 2, 3), |
| 141 | + feature_name="sample_class", |
| 142 | + subclass_name="sample_subclass", |
| 143 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7672"}, |
| 144 | + metric_name="50%_iou", |
| 145 | + aggregation=ConfusionMatrixAggregation.CONFUSION_MATRIX, |
| 146 | + ), |
| 147 | + ConfusionMatrixMetric( |
| 148 | + value=(0, 1, 2, 5), |
| 149 | + feature_name="sample_class", |
| 150 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7673"}, |
| 151 | + metric_name="50%_iou", |
| 152 | + aggregation=ConfusionMatrixAggregation.CONFUSION_MATRIX, |
| 153 | + ), |
| 154 | + ConfusionMatrixMetric( |
| 155 | + value={0.1: (0, 1, 2, 3), 0.2: (5, 3, 4, 3)}, |
| 156 | + extra={"uuid": "a22bbf6e-b2da-4abe-9a11-df84759f7674"}, |
| 157 | + metric_name="50%_iou", |
| 158 | + aggregation=ConfusionMatrixAggregation.CONFUSION_MATRIX, |
| 159 | + ), |
| 160 | + ], |
| 161 | + ) |
| 162 | + ] |
| 163 | + |
| 164 | + res = list(NDJsonConverter.serialize(labels)) |
33 | 165 |
|
34 |
| - label_list = list(NDJsonConverter.deserialize(data)) |
35 |
| - reserialized = list(NDJsonConverter.serialize(label_list)) |
36 |
| - assert json.dumps(reserialized, sort_keys=True) == json.dumps( |
37 |
| - data, sort_keys=True |
38 |
| - ) |
| 166 | + assert data == res |
0 commit comments