|
| 1 | +from types import SimpleNamespace |
| 2 | + |
| 3 | +import pytest |
| 4 | + |
| 5 | +from labelbox.data.annotation_types import ClassificationAnnotation, ObjectAnnotation |
| 6 | +from labelbox.data.annotation_types import Polygon, Point, Rectangle, Mask, MaskData, Line, Radio, Text, Checklist, ClassificationAnswer |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +class NameSpace(SimpleNamespace): |
| 10 | + |
| 11 | + def __init__(self, predictions, ground_truths, expected): |
| 12 | + super(NameSpace, self).__init__(predictions=predictions, |
| 13 | + ground_truths=ground_truths, |
| 14 | + expected=expected) |
| 15 | + |
| 16 | + |
| 17 | +def get_radio(name, answer_name): |
| 18 | + return ClassificationAnnotation( |
| 19 | + name = name, |
| 20 | + value = Radio(answer = ClassificationAnswer(name = answer_name)) |
| 21 | + ) |
| 22 | + |
| 23 | +def get_text(name, text_content): |
| 24 | + return ClassificationAnnotation( |
| 25 | + name = name, |
| 26 | + value = Text(answer = text_content) |
| 27 | + ) |
| 28 | + |
| 29 | +def get_checklist(name, answer_names): |
| 30 | + return ClassificationAnnotation( |
| 31 | + name = name, |
| 32 | + value = Radio(answer = [ClassificationAnswer(name = answer_name) for answer_name in answer_names]) |
| 33 | + ) |
| 34 | + |
| 35 | + |
| 36 | +def get_polygon(name, points, subclasses = None): |
| 37 | + return ObjectAnnotation(name = name, |
| 38 | + value = Polygon( points = [Point(x = x, y = y) for x,y in points]), |
| 39 | + classifications = [] if subclasses is None else subclasses |
| 40 | + ) |
| 41 | + |
| 42 | +def get_rectangle(name, start, end): |
| 43 | + return ObjectAnnotation(name = name, |
| 44 | + value = Rectangle( start = Point(x = start[0], y = start[1]), end = Point(x = end[0], y = end[1])) |
| 45 | + ) |
| 46 | + |
| 47 | +def get_mask(name, pixels, color = (1,1,1)): |
| 48 | + mask = np.zeros((32,32,3)).astype(np.uint8) |
| 49 | + for pixel in pixels: |
| 50 | + mask[pixel[0], pixel[1]] = color |
| 51 | + return ObjectAnnotation(name=name, |
| 52 | + value=Mask(mask = MaskData(arr = mask), color =color) |
| 53 | + ) |
| 54 | + |
| 55 | +def get_line(name, points): |
| 56 | + return ObjectAnnotation(name = name, |
| 57 | + value = Line( points = [Point(x = x, y = y) for x,y in points]) |
| 58 | + ) |
| 59 | + |
| 60 | +def get_point(name, x, y): |
| 61 | + return ObjectAnnotation(name = name, |
| 62 | + value = Point(x = x, y = y) |
| 63 | + ) |
| 64 | + |
| 65 | + |
| 66 | +def get_object_pairs(tool_fn, **kwargs): |
| 67 | + return [ |
| 68 | + NameSpace( |
| 69 | + predictions=[ |
| 70 | + tool_fn("cat", **kwargs) |
| 71 | + ], |
| 72 | + ground_truths=[ |
| 73 | + tool_fn("cat", **kwargs) |
| 74 | + ], |
| 75 | + expected = [1,0,0,0] |
| 76 | + ), |
| 77 | + NameSpace( |
| 78 | + predictions=[ |
| 79 | + tool_fn("cat", **kwargs), |
| 80 | + tool_fn("cat", **kwargs) |
| 81 | + ], |
| 82 | + ground_truths=[ |
| 83 | + tool_fn("cat", **kwargs), |
| 84 | + tool_fn("cat", **kwargs) |
| 85 | + ], |
| 86 | + expected = [2,0,0,0] |
| 87 | + ), |
| 88 | + NameSpace( |
| 89 | + predictions=[ |
| 90 | + tool_fn("cat", **kwargs), |
| 91 | + tool_fn("cat", **kwargs) |
| 92 | + ], |
| 93 | + ground_truths=[ |
| 94 | + tool_fn("cat", **kwargs) |
| 95 | + ], |
| 96 | + expected = [1,1,0,0] |
| 97 | + ), |
| 98 | + NameSpace( |
| 99 | + predictions=[ |
| 100 | + tool_fn("cat", **kwargs) |
| 101 | + ], |
| 102 | + ground_truths=[ |
| 103 | + tool_fn("cat", **kwargs), |
| 104 | + tool_fn("cat", **kwargs) |
| 105 | + ], |
| 106 | + expected = [1,0,0,1] |
| 107 | + ), |
| 108 | + NameSpace( |
| 109 | + predictions=[], |
| 110 | + ground_truths=[], |
| 111 | + expected = [] |
| 112 | + ), |
| 113 | + NameSpace( |
| 114 | + predictions=[], |
| 115 | + ground_truths=[ |
| 116 | + tool_fn("cat", **kwargs) |
| 117 | + ], |
| 118 | + expected = [0,0,0,1] |
| 119 | + ), |
| 120 | + NameSpace( |
| 121 | + predictions=[ |
| 122 | + tool_fn("cat", **kwargs) |
| 123 | + ], |
| 124 | + ground_truths=[], |
| 125 | + expected = [0,1,0,0] |
| 126 | + ), |
| 127 | + NameSpace( |
| 128 | + predictions=[ |
| 129 | + tool_fn("cat", **kwargs) |
| 130 | + ], |
| 131 | + ground_truths=[ |
| 132 | + tool_fn("dog", **kwargs) |
| 133 | + ], |
| 134 | + expected = [0,1,0,1] |
| 135 | + ), |
| 136 | + ] |
| 137 | + |
| 138 | +@pytest.fixture |
| 139 | +def polygon_pair(): |
| 140 | + return get_object_pairs(get_polygon, points = [[0,0], [10,0], [10,10], [0,10]] ) |
| 141 | + |
| 142 | + |
| 143 | +@pytest.fixture |
| 144 | +def rectangle_pair(): |
| 145 | + return get_object_pairs(get_rectangle, start = [0,0], end = [10,10] ) |
| 146 | + |
| 147 | +@pytest.fixture |
| 148 | +def mask_pair(): |
| 149 | + return get_object_pairs(get_mask, pixels = [[0,0]]) |
| 150 | + |
| 151 | +@pytest.fixture |
| 152 | +def line_pair(): |
| 153 | + return get_object_pairs(get_line, points = [[0,0], [10,0], [10,10], [0,10]]) |
| 154 | + |
| 155 | +@pytest.fixture |
| 156 | +def point_pair(): |
| 157 | + return get_object_pairs(get_point, x = 0, y = 0) |
| 158 | + |
| 159 | + |
| 160 | +""" |
| 161 | +def get_radio(name, answer_name): |
| 162 | + return ClassificationAnnotation( |
| 163 | + name = name, |
| 164 | + value = Radio(answer = ClassificationAnswer(name = answer_name)) |
| 165 | + ) |
| 166 | +
|
| 167 | +def get_text(name, text_content): |
| 168 | + return ClassificationAnnotation( |
| 169 | + name = name, |
| 170 | + value = Text(answer = text_content) |
| 171 | + ) |
| 172 | +
|
| 173 | +def get_checklist(name, answer_names): |
| 174 | + return ClassificationAnnotation( |
| 175 | + name = name, |
| 176 | + value = Radio(answer = [ClassificationAnswer(name = answer_name) for answer_name in answer_names]) |
| 177 | + ) |
| 178 | +
|
| 179 | +@pytest.fixture |
| 180 | +def radio_pairs(): |
| 181 | + return [ |
| 182 | + NameSpace( |
| 183 | + predictions=[get_radio("is_animal", answer_name = "yes")], |
| 184 | + ground_truths=[get_radio("is_animal", answer_name = "yes")], |
| 185 | + expected = [1,0,0,0] |
| 186 | + ), |
| 187 | + NameSpace( |
| 188 | + predictions=[get_radio("is_animal", answer_name = "yes")], |
| 189 | + ground_truths=[get_radio("is_animal", answer_name = "no")], |
| 190 | + expected = [1,0,0,0] |
| 191 | + ), |
| 192 | + NameSpace( |
| 193 | + predictions=[ |
| 194 | + get_radio("is_animal", answer_name = "yes") |
| 195 | + ], |
| 196 | + ground_truths=[], |
| 197 | + expected = [0,1,0,0] |
| 198 | + ), |
| 199 | + NameSpace( |
| 200 | + predictions=[], |
| 201 | + ground_truths=[get_radio("is_animal", answer_name = "yes")], |
| 202 | + expected = [0,0,0,1] |
| 203 | + ), |
| 204 | + NameSpace( |
| 205 | + predictions=[], |
| 206 | + ground_truths=[], |
| 207 | + expected = [0,0,1,0] |
| 208 | + ) |
| 209 | + ] |
| 210 | +
|
| 211 | +
|
| 212 | +@pytest.fixture |
| 213 | +def radio_pairs(): |
| 214 | + return [ |
| 215 | + NameSpace( |
| 216 | + predictions=[get_text("animal_name", answer_name = "yes")], |
| 217 | + ground_truths=[get_text("animal_name", answer_name = "yes")], |
| 218 | + expected = [1,0,0,0] |
| 219 | + ), |
| 220 | + NameSpace( |
| 221 | + predictions=[ |
| 222 | + get_text("is_animal", answer_name = "yes") |
| 223 | + ], |
| 224 | + ground_truths=[], |
| 225 | + expected = [0,1,0,0] |
| 226 | + ), |
| 227 | + NameSpace( |
| 228 | + predictions=[], |
| 229 | + ground_truths=[get_text("is_animal", answer_name = "yes")], |
| 230 | + expected = [0,0,0,1] |
| 231 | + ), |
| 232 | + NameSpace( |
| 233 | + predictions=[], |
| 234 | + ground_truths=[], |
| 235 | + expected = [0,0,1,0] |
| 236 | + ) |
| 237 | + ] |
| 238 | +
|
| 239 | +# TODO: Do we actually capture true negatives? We def should for classifications. and maybe for non-classifications too.. |
| 240 | +# TODO: Change the values to be named. I can't even keep track of this shit |
| 241 | +
|
| 242 | +""" |
| 243 | + |
| 244 | +# Current question.. how do we handle classification precision and recall... |
0 commit comments