Skip to content

how can i plot training figures by Plot.py #48

@stu-yzZ

Description

@stu-yzZ

I modified the state vector x = [p_x, p_y, v_x, v_y, a_x, a_y] and also adjusted F, H, and Q accordingly based on the original state vector.

## modify code
m_2d = 6 # dim of state for 2D CA model
F_gen_2d = torch.tensor([
    [1, 0, delta_t_gen, 0, 0.5 * delta_t_gen ** 2, 0],
    [0, 1, 0, delta_t_gen, 0, 0.5 * delta_t_gen ** 2],
    [0, 0, 1, 0, delta_t_gen, 0],
    [0, 0, 0, 1, 0, delta_t_gen],
    [0, 0, 0, 0, 1, 0],
    [0, 0, 0, 0, 0, 1],
]).float()
H_identity_2d = torch.eye(6)
Q_gen_2d = q2 * torch.tensor([
    [1/20*delta_t_gen**5, 0,                 1/8*delta_t_gen**4, 0,                 1/6*delta_t_gen**3, 0],
    [0,                 1/20*delta_t_gen**5, 0,                 1/8*delta_t_gen**4, 0,                 1/6*delta_t_gen**3],
    [1/8*delta_t_gen**4, 0,                 1/3*delta_t_gen**3, 0,                 1/2*delta_t_gen**2, 0],
    [0,                 1/8*delta_t_gen**4, 0,                 1/3*delta_t_gen**3, 0,                 1/2*delta_t_gen**2],
    [1/6*delta_t_gen**3, 0,                 1/2*delta_t_gen**2, 0,                 delta_t_gen,        0],
    [0,                 1/6*delta_t_gen**3, 0,                 1/2*delta_t_gen**2, 0,                 delta_t_gen],
]).float()
R_3_2d = r2 * torch.eye(6)
args.n_steps = 2000
args.n_batch = 40
args.lr = 1e-4
args.wd = 1e-4

## Generation model (CA)
sys_model_gen = SystemModel(F_gen_2d, Q_gen_2d, #H_onlyPos, R_onlyPos, 
                            H_identity_2d, R_3_2d,
                            args.T, args.T_test)
sys_model_gen.InitSequence(m1x_0_2d, m2x_0_gen_2d)# x0 and P0

## Feed model (to KF, KalmanNet) 
 sys_model = SystemModel(F_gen_2d, Q_gen_2d, #H_onlyPos, R_onlyPos, 
                         H_identity_2d, R_3_2d,
                         args.T, args.T_test)
 sys_model.InitSequence(m1x_0_2d, m2x_0_2d)# x0 and P0

However,

  1. Q1:I noticed that the MSE (Mean Squared Error) doesn’t perform well during training. I need to inspect the entire training process, so I might need to use the plot.py function. Could you provide a concrete example?

  2. Q2:Should normalization be considered across these six dimensions [p_x, p_y, v_x, v_y, a_x, a_y]? The key code I modified is shown above (primarily aligning some state dimensions).

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions