Skip to content

BackendError: POST failed with: {"errors":["Internal error"],"error":{"code":13,"details":[]},"wasSuccessful":false} #236

@PrathmeshAdsod

Description

@PrathmeshAdsod

I am using newly launched kaggle packages but it is giving me internal error when doing kagglehub.model_download


My code ->
#| export
class Model:
def init(self):

    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
        bnb_4bit_compute_dtype=torch.float16,
    )
    #self.model_path = "/kaggle/input/deepseek-r1/transformers/deepseek-r1-distill-qwen-7b/2"
    self.model_path = kagglehub.model_download('deepseek-r1/transformers/deepseek-r1-distill-qwen-7b/2')
    self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
    self.model = AutoModelForCausalLM.from_pretrained(self.model_path,
        device_map="auto",
        quantization_config=quantization_config,
     )

def predict(self, description):
    # Prompt the model to generate SVG code
    prompt = f"""
   I changed prompt here
     """
    inputs = self.tokenizer.encode(prompt, return_tensors='pt').to('cuda')
    outputs = self.model.generate(inputs, max_length=5000)
    response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Extract valid SVG code if possible
    start = response.find('<svg')
    end = response.find('</svg>', start) + 6 if start != -1 else -1
    if start != -1 and end != -1:
        svg_code = response[start:end]
    else:
        svg_code = "Failed to generate valid SVG"
    return svg_code, response

Complete error -->

BackendError Traceback (most recent call last)
in <cell line: 2>()
1 # Test the SVGGenerator
----> 2 generator = Model()

in init(self)
10 )
11 #self.model_path = "/kaggle/input/deepseek-r1/transformers/deepseek-r1-distill-qwen-7b/2"
---> 12 self.model_path = kagglehub.model_download('deepseek-r1/transformers/deepseek-r1-distill-qwen-7b/2')
13 self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
14 self.model = AutoModelForCausalLM.from_pretrained(self.model_path,

/usr/local/lib/python3.10/dist-packages/kagglehub/models.py in model_download(handle, path, force_download)
33 h = parse_model_handle(handle)
34 logger.info(f"Downloading Model: {h.to_url()} ...", extra={**EXTRA_CONSOLE_BLOCK})
---> 35 path, _ = registry.model_resolver(h, path, force_download=force_download)
36 return path
37

/usr/local/lib/python3.10/dist-packages/kagglehub/registry.py in call(self, *args, **kwargs)
26 for impl in reversed(self._impls):
27 if impl.is_supported(*args, **kwargs):
---> 28 return impl(*args, **kwargs)
29 else:
30 fails.append(type(impl).name)

/usr/local/lib/python3.10/dist-packages/kagglehub/resolver.py in call(self, handle, path, force_download)
27 Some cases where version number might be missing: Competition datasource, API-based models.
28 """
---> 29 path, version = self._resolve(handle, path, force_download=force_download)
30
31 # Note handles are immutable, so _resolve() could not have altered our reference

/usr/local/lib/python3.10/dist-packages/kagglehub/kaggle_cache_resolver.py in _resolve(self, h, path, force_download)
200 model_ref["VersionNumber"] = str(version_from_package_scope)
201
--> 202 result = client.post(
203 ATTACH_DATASOURCE_REQUEST_NAME,
204 {

/usr/local/lib/python3.10/dist-packages/kagglehub/clients.py in post(self, request_name, data, timeout)
389 if not json_response["wasSuccessful"]:
390 msg = f"POST failed with: {response.text!s}"
--> 391 raise BackendError(msg)
392 if "result" not in json_response:
393 msg = "'result' field missing from response"

BackendError: POST failed with: {"errors":["Internal error"],"error":{"code":13,"details":[]},"wasSuccessful":false}


Do I need to download kaggle api key and use kaggle.json somewhere?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions