diff --git a/Dockerfile.tmpl b/Dockerfile.tmpl index 3d892f8a..55878de4 100644 --- a/Dockerfile.tmpl +++ b/Dockerfile.tmpl @@ -38,9 +38,9 @@ RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/lib {{ end }} # Keep these variables in sync if base image is updated. -ENV TENSORFLOW_VERSION=2.15.0 +ENV TENSORFLOW_VERSION=2.16.1 # See https://github.com/tensorflow/io#tensorflow-version-compatibility -ENV TENSORFLOW_IO_VERSION=0.35.0 +ENV TENSORFLOW_IO_VERSION=0.37.0 # We need to redefine the ARG here to get the ARG value defined above the FROM instruction. # See: https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact @@ -198,11 +198,11 @@ RUN apt-get update && \ RUN pip install -f http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Py.html h2o && /tmp/clean-layer.sh -# b/318672158 Use simply tensorflow-probability once > 0.23.0 is released. RUN pip install \ "tensorflow==${TENSORFLOW_VERSION}" \ "tensorflow-io==${TENSORFLOW_IO_VERSION}" \ - git+https://github.com/tensorflow/probability.git@fbc5ebe9b1d343113fb917010096cfd88b32eecf \ + tensorflow-probability \ + tensorflow_decision_forests \ tensorflow_text \ "tensorflow_hub>=0.16.0" \ # b/331799280 remove once other packages over to dm-tre @@ -210,20 +210,13 @@ RUN pip install \ tf-keras && \ /tmp/clean-layer.sh -# b/318672158 Use simply tensorflow_decision_forests on next release, expected with tf 2.16 -RUN pip install tensorflow_decision_forests==1.8.1 --no-deps && \ - /tmp/clean-layer.sh - RUN chmod +x /tmp/keras_patch.sh && \ /tmp/keras_patch.sh ADD patches/keras_internal.py /opt/conda/lib/python3.10/site-packages/tensorflow_decision_forests/keras/keras_internal.py ADD patches/keras_internal_test.py /opt/conda/lib/python3.10/site-packages/tensorflow_decision_forests/keras/keras_internal_test.py -# Remove "--no-deps" flag and "namex" package once Keras 3.* is included in our base image. -# We ignore dependencies since tf2.15 and Keras 3.* should work despite pip saying it won't. -# Currently, keras tries to install a nightly version of tf 2.16: https://github.com/keras-team/keras/blob/fe2f54aa5bc42fb23a96449cf90434ab9bb6a2cd/requirements.txt#L2 -RUN pip install --no-deps "keras>3" keras-cv keras-nlp namex && \ +RUN pip install "keras>3" keras-cv keras-nlp && \ /tmp/clean-layer.sh # b/328788268 libpysal 4.10 seems to fail with "module 'shapely' has no attribute 'Geometry'. Did you mean: 'geometry'" diff --git a/config.txt b/config.txt index 6afee191..0ff832d6 100644 --- a/config.txt +++ b/config.txt @@ -1,7 +1,7 @@ BASE_IMAGE_REPO=gcr.io/deeplearning-platform-release -BASE_IMAGE_TAG=m114 -CPU_BASE_IMAGE_NAME=tf2-cpu.2-15.py310 -GPU_BASE_IMAGE_NAME=tf2-gpu.2-15.py310 +BASE_IMAGE_TAG=m122 +CPU_BASE_IMAGE_NAME=tf2-cpu.2-16.py310 +GPU_BASE_IMAGE_NAME=tf2-gpu.2-16.py310 LIGHTGBM_VERSION=4.2.0 TORCH_VERSION=2.1.2 TORCHAUDIO_VERSION=2.1.2 @@ -9,4 +9,4 @@ TORCHTEXT_VERSION=0.16.2 TORCHVISION_VERSION=0.16.2 JAX_VERSION=0.4.26 CUDA_MAJOR_VERSION=12 -CUDA_MINOR_VERSION=1 +CUDA_MINOR_VERSION=3