1
1
import unittest
2
2
3
3
import fastai
4
- import pandas as pd
5
- import torch
6
4
7
- from fastai .tabular import *
8
- from fastai .core import partition
9
- from fastai .torch_core import tensor
5
+ from fastai .tabular .all import *
10
6
11
7
class TestFastAI (unittest .TestCase ):
12
- def test_partition (self ):
13
- result = partition ([1 ,2 ,3 ,4 ,5 ], 2 )
14
-
15
- self .assertEqual (3 , len (result ))
16
-
17
8
def test_has_version (self ):
18
- self .assertGreater (len (fastai .__version__ ), 1 )
9
+ self .assertGreater (len (fastai .__version__ ), 2 )
19
10
20
11
# based on https://github.com/fastai/fastai/blob/master/tests/test_torch_core.py#L17
21
12
def test_torch_tensor (self ):
@@ -25,18 +16,12 @@ def test_torch_tensor(self):
25
16
self .assertTrue (torch .all (a == b ))
26
17
27
18
def test_tabular (self ):
28
- df = pd .read_csv ("/input/tests/data/train.csv" )
29
- procs = [FillMissing , Categorify , Normalize ]
30
-
31
- valid_idx = range (len (df )- 5 , len (df ))
32
- dep_var = "label"
33
- cont_names = []
34
- for i in range (784 ):
35
- cont_names .append ("pixel" + str (i ))
36
-
37
- data = (TabularList .from_df (df , path = "" , cont_names = cont_names , cat_names = [], procs = procs )
38
- .split_by_idx (valid_idx )
39
- .label_from_df (cols = dep_var )
40
- .databunch ())
41
- learn = tabular_learner (data , layers = [200 , 100 ])
42
- learn .fit (epochs = 1 )
19
+ dls = TabularDataLoaders .from_csv (
20
+ "/input/tests/data/train.csv" ,
21
+ cont_names = ["pixel" + str (i ) for i in range (784 )],
22
+ y_names = 'label' ,
23
+ procs = [FillMissing , Categorify , Normalize ])
24
+ learn = tabular_learner (dls , layers = [200 , 100 ])
25
+ learn .fit_one_cycle (n_epoch = 1 )
26
+
27
+ self .assertGreater (learn .smooth_loss , 0 )
0 commit comments