diff --git a/Project.toml b/Project.toml index dacc5b2..9a0da55 100644 --- a/Project.toml +++ b/Project.toml @@ -15,14 +15,14 @@ SolverCore = "ff4d7338-4cf1-434d-91df-b86cb86fb843" SolverTools = "b5612192-2639-5dc1-abfe-fbedd65fab29" [compat] -JSOSolvers = "0.11, 0.12, 0.13" -Krylov = "0.8, 0.9" -LinearOperators = "1, 2" -NLPModels = "0.20, 0.21" -NLPModelsModifiers = "0.6, 0.7" +JSOSolvers = "0.14" +Krylov = "0.10" +LinearOperators = "2" +NLPModels = "0.21" +NLPModelsModifiers = "0.7" SolverCore = "0.3" -SolverTools = "0.8, 0.9" -julia = "^1.6" +SolverTools = "0.9" +julia = "1.10" [extras] ADNLPModels = "54578032-b7ea-4c30-94aa-7cbd1cce6c9a" diff --git a/docs/Project.toml b/docs/Project.toml index c35a578..ccd0ccc 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -12,14 +12,14 @@ SolverBenchmark = "581a75fa-a23a-52d0-a590-d6201de2218a" SolverCore = "ff4d7338-4cf1-434d-91df-b86cb86fb843" [compat] -ADNLPModels = "0.7" -CUTEst = "0.13" +ADNLPModels = "0.8.12" +CUTEst = "1.3.2" DataFrames = "1" -Documenter = "0.27" -GR = "0.62" -JLD2 = "0.4" -NLPModels = "0.20" +Documenter = "1" +GR = "0.73" +JLD2 = "0.5" +NLPModels = "0.21" NLPModelsIpopt = "0.10" Plots = "1" -SolverBenchmark = "0.6" +SolverBenchmark = "0.6.2" SolverCore = "0.3" diff --git a/docs/make.jl b/docs/make.jl index f66bd24..99853db 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -5,8 +5,7 @@ pages = ["Introduction" => "index.md", "Benchmark" => "benchmark.md", "Reference makedocs( sitename = "Percival.jl", - strict = true, - format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"), + format = Documenter.HTML(ansicolor = true, prettyurls = get(ENV, "CI", nothing) == "true"), modules = [Percival], pages = pages, ) diff --git a/docs/src/benchmark.md b/docs/src/benchmark.md index aa3bfaf..1cb2b6f 100644 --- a/docs/src/benchmark.md +++ b/docs/src/benchmark.md @@ -17,7 +17,7 @@ using SolverBenchmark Let us select problems from CUTEst with a maximum of 100 variables or constraints. After removing problems with fixed variables, examples with a constant objective, and infeasibility residuals. ``` @example ex1 -_pnames = CUTEst.select( +_pnames = select_sif_problems( max_var = 100, min_con = 1, max_con = 100, diff --git a/docs/src/reference.md b/docs/src/reference.md index 2d29a6c..6b80a0e 100644 --- a/docs/src/reference.md +++ b/docs/src/reference.md @@ -1,17 +1,17 @@ # Reference -​ + ## Contents -​ + ```@contents Pages = ["reference.md"] ``` -​ + ## Index -​ + ```@index Pages = ["reference.md"] ``` -​ + ```@autodocs Modules = [Percival] -``` \ No newline at end of file +``` diff --git a/src/method.jl b/src/method.jl index 69db01d..8a8860b 100644 --- a/src/method.jl +++ b/src/method.jl @@ -161,7 +161,7 @@ mutable struct PercivalSolver{T, V, Op, M, ST} <: AbstractOptimizationSolver Jv::V Jtv::V Jx::Op - cgls_solver::CglsSolver{T, T, V} + cgls_workspace::CglsWorkspace{T, T, V} sub_pb::AugLagModel{M, T, V} sub_solver::ST sub_stats::GenericExecutionStats{T, V, V, Any} @@ -185,7 +185,7 @@ function PercivalSolver( Jx = jac_op!(nlp, x, Jv, Jtv) Op = typeof(Jx) - cgls_solver = CglsSolver(Jx', gx) + cgls_workspace = CglsWorkspace(Jx', gx) sub_pb = AugLagModel(nlp, V(undef, ncon), T(0), x, T(0), V(undef, ncon)) model = subproblem_modifier(sub_pb) @@ -206,7 +206,7 @@ function PercivalSolver( Jv, Jtv, Jx, - cgls_solver, + cgls_workspace, sub_pb, sub_solver, sub_stats, @@ -345,8 +345,8 @@ function SolverCore.solve!( # Lagrange multiplier y = solver.y if inity - cgls!(solver.cgls_solver, Jx', gx, verbose = cgls_verbose) - y = solver.cgls_solver.x + cgls!(solver.cgls_workspace, Jx', gx, verbose = cgls_verbose) + y = solver.cgls_workspace.x else y .= nlp.meta.y0 end