You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on May 6, 2021. It is now read-only.
Copy file name to clipboardExpand all lines: src/experiments/atari/atari.jl
+56-5
Original file line number
Diff line number
Diff line change
@@ -1,5 +1,7 @@
1
1
using.ArcadeLearningEnvironment
2
2
using.ReinforcementLearningEnvironments
3
+
using BSON
4
+
using Flux:Chain
3
5
4
6
functionatari_env_factory(
5
7
name,
@@ -8,8 +10,9 @@ function atari_env_factory(
8
10
max_episode_steps =100_000;
9
11
seed =nothing,
10
12
repeat_action_probability =0.25,
13
+
n_replica =1
11
14
)
12
-
AtariEnv(;
15
+
init(seed) =AtariEnv(;
13
16
name =string(name),
14
17
grayscale_obs =true,
15
18
noop_max =30,
@@ -21,14 +24,62 @@ function atari_env_factory(
21
24
full_action_space =false,
22
25
seed = seed,
23
26
) |>
24
-
StateOverriddenEnv(
25
-
ResizeImage(state_size...), # this implementation is different from cv2.resize https://github.com/google/dopamine/blob/e7d780d7c80954b7c396d984325002d60557f7d1/dopamine/discrete_domains/atari_lib.py#L629
0 commit comments