Skip to content

julia PyPlot support missing data #593

Open
@deszoeke

Description

@deszoeke

Passing a value of missing, a first class type in Julia Base, to matplotlib should simply not the plot missing data. It should handle missing just like it presently does NaN.

However, passing a missing to matplotlib results in long and unhelpful errors from PyPlot and matplotlib:

plot([0,missing,2])

ERROR: PyError ($(Expr(:escape, :(ccall(#= ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:43 =# @pysym(:PyObject_Call), PyPtr, (PyPtr, PyPtr, PyPtr), o, pyargsptr, kw))))) <class 'TypeError'>
TypeError("float() argument must be a string or a real number, not 'PyCall.jlwrap'")
  File "mypath/python3.12/site-packages/matplotlib/pyplot.py", line 3794, in plot
    return gca().plot(
           ^^^^^^^^^^^
  File "/mypath/python3.12/site-packages/matplotlib/axes/_axes.py", line 1781, in plot
    self.add_line(line)
  File "/mypath/python3.12/site-packages/matplotlib/axes/_base.py", line 2339, in add_line
    self._update_line_limits(line)
  File "/mypath/python3.12/site-packages/matplotlib/axes/_base.py", line 2362, in _update_line_limits
    path = line.get_path()
           ^^^^^^^^^^^^^^^
  File "/mypath/python3.12/site-packages/matplotlib/lines.py", line 1037, in get_path
    self.recache()
  File "/mypath/python3.12/site-packages/matplotlib/lines.py", line 679, in recache
    y = _to_unmasked_float_array(yconv).ravel()
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/mypath/python3.12/site-packages/matplotlib/cbook.py", line 1398, in _to_unmasked_float_array
    return np.asarray(x, float)
           ^^^^^^^^^^^^^^^^^^^^

Stacktrace:
  [1] pyerr_check
    @ ~/.julia/packages/PyCall/1gn3u/src/exception.jl:75 [inlined]
  [2] pyerr_check
    @ ~/.julia/packages/PyCall/1gn3u/src/exception.jl:79 [inlined]
  [3] _handle_error(msg::String)
    @ PyCall ~/.julia/packages/PyCall/1gn3u/src/exception.jl:96
  [4] macro expansion
    @ ~/.julia/packages/PyCall/1gn3u/src/exception.jl:110 [inlined]
  [5] #107
    @ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:43 [inlined]
  [6] disable_sigint
    @ ./c.jl:473 [inlined]
  [7] __pycall!
    @ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:42 [inlined]
  [8] _pycall!(ret::PyObject, o::PyObject, args::Tuple{Vector{Union{Missing, Int64}}}, nargs::Int64, kw::Ptr{Nothing})
    @ PyCall ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:29
  [9] _pycall!
    @ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:11 [inlined]
 [10] pycall
    @ ~/.julia/packages/PyCall/1gn3u/src/pyfncall.jl:83 [inlined]
 [11] plot(args::Vector{Union{Missing, Int64}}; kws::@Kwargs{})
    @ PyPlot ~/.julia/packages/PyPlot/rWSdf/src/PyPlot.jl:194
 [12] plot(args::Vector{Union{Missing, Int64}})
    @ PyPlot ~/.julia/packages/PyPlot/rWSdf/src/PyPlot.jl:190
 [13] top-level scope
    @ REPL[56]:1

For years I have wrapped my inputs to matplotlib in the helper function

m2n(x) = ismissing(x) ? NaN : x

It is awkward.

I propose then, that

  1. missing values are simply (not) plotted, just like NaNs.
  2. a brief warning catch and warn the user of missings in the data.

The proposed change will make PyPlot more compatible with Julia and Plots.jl, cf.
JuliaPlots/Plots.jl#1706

I expect this will not break most cases, because missing is just a newer use pattern than NaN for missing data.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions