|
1 |
| -# MarineEcosystemNotebooks |
| 1 | +# Marine Ecosystem Notebooks |
2 | 2 |
|
3 | 3 | [](https://mybinder.org/v2/gh/gaelforget/Cbiomes2019Notebooks/master)
|
4 | 4 | [](https://zenodo.org/badge/latestdoi/185446209)
|
5 | 5 |
|
6 | 6 | [Jupyter](https://jupyter.org) / [Julia](https://julialang.org) notebooks that use marine ecosystem models and observations. They illustrate:
|
7 | 7 |
|
8 |
| -1. how differential equation solvers can be used to integrate models in time |
9 |
| -2. how ocean colour data and [CBIOMES](https://https://github.com/CBIOMES) model ouptut can be used jointly |
10 |
| -3. how model output and data available online are easily accessed in `julia` |
| 8 | +- 1. how differential equation solvers can be used to integrate models in time |
| 9 | +- 2. how ocean colour data and [CBIOMES](https://https://github.com/CBIOMES) model ouptut can be used jointly |
| 10 | +- 3. how model output and data available online are easily accessed in `julia` |
11 | 11 |
|
12 | 12 | <p align="center">
|
13 |
| - <img width="300" src="https://raw.githubusercontent.com/gaelforget/Cbiomes2019Notebooks/master/figs/cbiomes-01.png"> |
| 13 | + <img width="400" src="https://github.com/gaelforget/MarineEcosystemNotebooks/blob/master/figs/RandomFlow.gif?raw=true"> |
14 | 14 | </p>
|
15 | 15 |
|
16 | 16 | ## Differential Equations
|
17 | 17 |
|
18 |
| -- `SolidBodyRotation.ipynb` simulates a single trajectory in an idealized flow field (e.g. solid body rotation) |
19 |
| -- `RandomFlow_fleet.ipynb` simulates a cloud of particles in a randomly generated eddy field (e.g. meso-scale). |
| 18 | +- 1. `SolidBodyRotation.ipynb` simulates a single trajectory in an idealized flow field (e.g. solid body rotation) |
| 19 | +- 2. `RandomFlow_fleet.ipynb` simulates a cloud of particles in a randomly generated eddy field (e.g. meso-scale). |
20 | 20 |
|
21 | 21 | ## Ocean Color And Biomes
|
22 | 22 |
|
23 |
| -- `01. OceanColourAlgorithms.ipynb` provides simple recipes to compare [CBIOMES model output](https://github.com/gaelforget/CBIOMES) and [ocean color data](https://www.oceancolour.org). |
24 |
| -- `02. ModelReflectanceMap.ipynb` uses `Plots.jl` to map out [CBIOMES model output](https://github.com/gaelforget/CBIOMES) and [ocean color data](https://www.oceancolour.org). |
25 |
| -- `03. Classifications.ipynb` applies the [OC-CCI](https://www.oceancolour.org) classifier ([Jackson et al 2017](http://doi.org/10.1016/j.rse.2017.03.036)) over a 2D region. |
26 |
| -- `04-ClassificationTestbed.ipynb` puts together a series of variables aimed at testing various classification algorithms based on [CBIOMES model output](https://github.com/gaelforget/CBIOMES). |
| 23 | +- 1. `OceanColourAlgorithms.ipynb` provides simple recipes to compare [CBIOMES model output](https://github.com/gaelforget/CBIOMES) and [ocean color data](https://www.oceancolour.org). |
| 24 | +- 2. `ModelReflectanceMap.ipynb` uses `Plots.jl` to map out [CBIOMES model output](https://github.com/gaelforget/CBIOMES) and [ocean color data](https://www.oceancolour.org). |
| 25 | +- 3. `Classifications.ipynb` applies the [OC-CCI](https://www.oceancolour.org) classifier ([Jackson et al 2017](http://doi.org/10.1016/j.rse.2017.03.036)) over a 2D region. |
| 26 | +- 4. `ClassificationTestbed.ipynb` puts together a series of variables aimed at testing various classification algorithms based on [CBIOMES model output](https://github.com/gaelforget/CBIOMES). |
27 | 27 |
|
28 |
| -## Accessing Data |
| 28 | +## Accessing Data And Model |
29 | 29 |
|
30 |
| -- `01. DarwinModelOutput.ipynb` uses either (1) the [MIT-CBIOMES opendap](http://engaging-opendap.mit.edu:8080/las/) server or (2) the [Simons CMAP](https://cmap.readthedocs.io/en/latest/) data base to access model output from the [CBIOMES](https://cbiomes.org) project. |
31 |
| -- `02. GradientsCruiseData.ipynb` uses [Simons' CMAP](https://cmap.readthedocs.io/en/latest/) to download [SCOPE-Gradients](http://scope.soest.hawaii.edu/data/gradients/data/) and then plots the data in `julia` using the `Plots.jl` package. |
32 |
| -- `03. ArgoProfileData.ipynb` uses [Argo](https://doi.org/10.3389/fmars.2019.00439), obtained from the IFREMER [GDAC](http://www.argodatamgt.org/Access-to-data/Access-via-FTP-on-GDAC), to look at variability in temperature and salinity through time, taking a North Pacific region as an example. |
| 30 | +- 1. `DarwinModelOutput.ipynb` uses either (1) the [MIT-CBIOMES opendap](http://engaging-opendap.mit.edu:8080/las/) server or (2) the [Simons CMAP](https://cmap.readthedocs.io/en/latest/) data base to access model output from the [CBIOMES](https://cbiomes.org) project. |
| 31 | +- 2. `GradientsCruiseData.ipynb` uses [Simons' CMAP](https://cmap.readthedocs.io/en/latest/) to download [SCOPE-Gradients](http://scope.soest.hawaii.edu/data/gradients/data/) and then plots the data in `julia` using the `Plots.jl` package. |
| 32 | +- 3. `ArgoProfileData.ipynb` uses [Argo](https://doi.org/10.3389/fmars.2019.00439), obtained from the IFREMER [GDAC](http://www.argodatamgt.org/Access-to-data/Access-via-FTP-on-GDAC), to look at variability in temperature and salinity through time, taking a North Pacific region as an example. |
33 | 33 |
|
34 | 34 |
|
35 | 35 | ## _Notes:_
|
|
0 commit comments