|
| 1 | +#= |
| 2 | +/* @(#)e_lgamma_r.c 1.3 95/01/18 */ |
| 3 | +/* |
| 4 | +* ==================================================== |
| 5 | +* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 6 | +* |
| 7 | +* Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 8 | +* Permission to use, copy, modify, and distribute this |
| 9 | +* software is freely granted, provided that this notice |
| 10 | +* is preserved. |
| 11 | +* ==================================================== |
| 12 | +* |
| 13 | +*/ |
| 14 | +=# |
| 15 | + |
| 16 | +#= |
| 17 | +
|
| 18 | +/* __ieee754_lgamma_r(x, signgamp) |
| 19 | + * Reentrant version of the logarithm of the Gamma function |
| 20 | + * with user provide pointer for the sign of Gamma(x). |
| 21 | + * |
| 22 | + * Method: |
| 23 | + * 1. Argument Reduction for 0 < x <= 8 |
| 24 | + * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
| 25 | + * reduce x to a number in [1.5,2.5] by |
| 26 | + * lgamma(1+s) = log(s) + lgamma(s) |
| 27 | + * for example, |
| 28 | + * lgamma(7.3) = log(6.3) + lgamma(6.3) |
| 29 | + * = log(6.3*5.3) + lgamma(5.3) |
| 30 | + * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
| 31 | + * 2. Polynomial approximation of lgamma around its |
| 32 | + * minimun ymin=1.461632144968362245 to maintain monotonicity. |
| 33 | + * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
| 34 | + * Let z = x-ymin; |
| 35 | + * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
| 36 | + * where |
| 37 | + * poly(z) is a 14 degree polynomial. |
| 38 | + * 2. Rational approximation in the primary interval [2,3] |
| 39 | + * We use the following approximation: |
| 40 | + * s = x-2.0; |
| 41 | + * lgamma(x) = 0.5*s + s*P(s)/Q(s) |
| 42 | + * with accuracy |
| 43 | + * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 |
| 44 | + * Our algorithms are based on the following observation |
| 45 | + * |
| 46 | + * zeta(2)-1 2 zeta(3)-1 3 |
| 47 | + * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
| 48 | + * 2 3 |
| 49 | + * |
| 50 | + * where Euler = 0.5771... is the Euler constant, which is very |
| 51 | + * close to 0.5. |
| 52 | + * |
| 53 | + * 3. For x>=8, we have |
| 54 | + * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
| 55 | + * (better formula: |
| 56 | + * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
| 57 | + * Let z = 1/x, then we approximation |
| 58 | + * f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
| 59 | + * by |
| 60 | + * 3 5 11 |
| 61 | + * w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
| 62 | + * where |
| 63 | + * |w - f(z)| < 2**-58.74 |
| 64 | + * |
| 65 | + * 4. For negative x, since (G is gamma function) |
| 66 | + * -x*G(-x)*G(x) = pi/sin(pi*x), |
| 67 | + * we have |
| 68 | + * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
| 69 | + * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
| 70 | + * Hence, for x<0, signgam = sign(sin(pi*x)) and |
| 71 | + * lgamma(x) = log(|Gamma(x)|) |
| 72 | + * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
| 73 | + * Note: one should avoid compute pi*(-x) directly in the |
| 74 | + * computation of sin(pi*(-x)). |
| 75 | + * |
| 76 | + * 5. Special Cases |
| 77 | + * lgamma(2+s) ~ s*(1-Euler) for tiny s |
| 78 | + * lgamma(1) = lgamma(2) = 0 |
| 79 | + * lgamma(x) ~ -log(|x|) for tiny x |
| 80 | + * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero |
| 81 | + * lgamma(inf) = inf |
| 82 | + * lgamma(-inf) = inf (bug for bug compatible with C99!?) |
| 83 | + * |
| 84 | + */ |
| 85 | +
|
| 86 | +=# |
| 87 | + |
| 88 | +const a0 = 7.72156649015328655494e-02 #= 0x3FB3C467, 0xE37DB0C8 =# |
| 89 | +const a1 = 3.22467033424113591611e-01 #= 0x3FD4A34C, 0xC4A60FAD =# |
| 90 | +const a2 = 6.73523010531292681824e-02 #= 0x3FB13E00, 0x1A5562A7 =# |
| 91 | +const a3 = 2.05808084325167332806e-02 #= 0x3F951322, 0xAC92547B =# |
| 92 | +const a4 = 7.38555086081402883957e-03 #= 0x3F7E404F, 0xB68FEFE8 =# |
| 93 | +const a5 = 2.89051383673415629091e-03 #= 0x3F67ADD8, 0xCCB7926B =# |
| 94 | +const a6 = 1.19270763183362067845e-03 #= 0x3F538A94, 0x116F3F5D =# |
| 95 | +const a7 = 5.10069792153511336608e-04 #= 0x3F40B6C6, 0x89B99C00 =# |
| 96 | +const a8 = 2.20862790713908385557e-04 #= 0x3F2CF2EC, 0xED10E54D =# |
| 97 | +const a9 = 1.08011567247583939954e-04 #= 0x3F1C5088, 0x987DFB07 =# |
| 98 | +const a10 = 2.52144565451257326939e-05 #= 0x3EFA7074, 0x428CFA52 =# |
| 99 | +const a11 = 4.48640949618915160150e-05 #= 0x3F07858E, 0x90A45837 =# |
| 100 | +const tc = 1.46163214496836224576e+00 #= 0x3FF762D8, 0x6356BE3F =# |
| 101 | +const tf = -1.21486290535849611461e-01 #= 0xBFBF19B9, 0xBCC38A42 =# |
| 102 | +#= tt = -(tail of tf) =# |
| 103 | +const tt = -3.63867699703950536541e-18 #= 0xBC50C7CA, 0xA48A971F =# |
| 104 | +const t0 = 4.83836122723810047042e-01 #= 0x3FDEF72B, 0xC8EE38A2 =# |
| 105 | +const t1 = -1.47587722994593911752e-01 #= 0xBFC2E427, 0x8DC6C509 =# |
| 106 | +const t2 = 6.46249402391333854778e-02 #= 0x3FB08B42, 0x94D5419B =# |
| 107 | +const t3 = -3.27885410759859649565e-02 #= 0xBFA0C9A8, 0xDF35B713 =# |
| 108 | +const t4 = 1.79706750811820387126e-02 #= 0x3F9266E7, 0x970AF9EC =# |
| 109 | +const t5 = -1.03142241298341437450e-02 #= 0xBF851F9F, 0xBA91EC6A =# |
| 110 | +const t6 = 6.10053870246291332635e-03 #= 0x3F78FCE0, 0xE370E344 =# |
| 111 | +const t7 = -3.68452016781138256760e-03 #= 0xBF6E2EFF, 0xB3E914D7 =# |
| 112 | +const t8 = 2.25964780900612472250e-03 #= 0x3F6282D3, 0x2E15C915 =# |
| 113 | +const t9 = -1.40346469989232843813e-03 #= 0xBF56FE8E, 0xBF2D1AF1 =# |
| 114 | +const t10 = 8.81081882437654011382e-04 #= 0x3F4CDF0C, 0xEF61A8E9 =# |
| 115 | +const t11 = -5.38595305356740546715e-04 #= 0xBF41A610, 0x9C73E0EC =# |
| 116 | +const t12 = 3.15632070903625950361e-04 #= 0x3F34AF6D, 0x6C0EBBF7 =# |
| 117 | +const t13 = -3.12754168375120860518e-04 #= 0xBF347F24, 0xECC38C38 =# |
| 118 | +const t14 = 3.35529192635519073543e-04 #= 0x3F35FD3E, 0xE8C2D3F4 =# |
| 119 | +const u0 = -7.72156649015328655494e-02 #= 0xBFB3C467, 0xE37DB0C8 =# |
| 120 | +const u1 = 6.32827064025093366517e-01 #= 0x3FE4401E, 0x8B005DFF =# |
| 121 | +const u2 = 1.45492250137234768737e+00 #= 0x3FF7475C, 0xD119BD6F =# |
| 122 | +const u3 = 9.77717527963372745603e-01 #= 0x3FEF4976, 0x44EA8450 =# |
| 123 | +const u4 = 2.28963728064692451092e-01 #= 0x3FCD4EAE, 0xF6010924 =# |
| 124 | +const u5 = 1.33810918536787660377e-02 #= 0x3F8B678B, 0xBF2BAB09 =# |
| 125 | +const v1 = 2.45597793713041134822e+00 #= 0x4003A5D7, 0xC2BD619C =# |
| 126 | +const v2 = 2.12848976379893395361e+00 #= 0x40010725, 0xA42B18F5 =# |
| 127 | +const v3 = 7.69285150456672783825e-01 #= 0x3FE89DFB, 0xE45050AF =# |
| 128 | +const v4 = 1.04222645593369134254e-01 #= 0x3FBAAE55, 0xD6537C88 =# |
| 129 | +const v5 = 3.21709242282423911810e-03 #= 0x3F6A5ABB, 0x57D0CF61 =# |
| 130 | +const s0 = -7.72156649015328655494e-02 #= 0xBFB3C467, 0xE37DB0C8 =# |
| 131 | +const s1 = 2.14982415960608852501e-01 #= 0x3FCB848B, 0x36E20878 =# |
| 132 | +const s2 = 3.25778796408930981787e-01 #= 0x3FD4D98F, 0x4F139F59 =# |
| 133 | +const s3 = 1.46350472652464452805e-01 #= 0x3FC2BB9C, 0xBEE5F2F7 =# |
| 134 | +const s4 = 2.66422703033638609560e-02 #= 0x3F9B481C, 0x7E939961 =# |
| 135 | +const s5 = 1.84028451407337715652e-03 #= 0x3F5E26B6, 0x7368F239 =# |
| 136 | +const s6 = 3.19475326584100867617e-05 #= 0x3F00BFEC, 0xDD17E945 =# |
| 137 | +const r1 = 1.39200533467621045958e+00 #= 0x3FF645A7, 0x62C4AB74 =# |
| 138 | +const r2 = 7.21935547567138069525e-01 #= 0x3FE71A18, 0x93D3DCDC =# |
| 139 | +const r3 = 1.71933865632803078993e-01 #= 0x3FC601ED, 0xCCFBDF27 =# |
| 140 | +const r4 = 1.86459191715652901344e-02 #= 0x3F9317EA, 0x742ED475 =# |
| 141 | +const r5 = 7.77942496381893596434e-04 #= 0x3F497DDA, 0xCA41A95B =# |
| 142 | +const r6 = 7.32668430744625636189e-06 #= 0x3EDEBAF7, 0xA5B38140 =# |
| 143 | +const w0 = 4.18938533204672725052e-01 #= 0x3FDACFE3, 0x90C97D69 =# |
| 144 | +const w1 = 8.33333333333329678849e-02 #= 0x3FB55555, 0x5555553B =# |
| 145 | +const w2 = -2.77777777728775536470e-03 #= 0xBF66C16C, 0x16B02E5C =# |
| 146 | +const w3 = 7.93650558643019558500e-04 #= 0x3F4A019F, 0x98CF38B6 =# |
| 147 | +const w4 = -5.95187557450339963135e-04 #= 0xBF4380CB, 0x8C0FE741 =# |
| 148 | +const w5 = 8.36339918996282139126e-04 #= 0x3F4B67BA, 0x4CDAD5D1 =# |
| 149 | +const w6 = -1.63092934096575273989e-03 #= 0xBF5AB89D, 0x0B9E43E4 =# |
| 150 | + |
| 151 | +# Matches OpenLibm behavior exactly, including return of sign |
| 152 | +function _lgamma_r(x::Float64) |
| 153 | + u = reinterpret(UInt64, x) |
| 154 | + hx = (u >>> 32) % Int32 |
| 155 | + lx = u % Int32 |
| 156 | + |
| 157 | + #= purge off +-inf, NaN, +-0, tiny and negative arguments =# |
| 158 | + signgamp = Int32(1) |
| 159 | + ix = signed(hx & 0x7fffffff) |
| 160 | + ix ≥ 0x7ff00000 && return x * x, signgamp |
| 161 | + ix | lx == 0 && return 1.0 / 0.0, signgamp |
| 162 | + if ix < 0x3b900000 #= |x|<2**-70, return -log(|x|) =# |
| 163 | + if hx < 0 |
| 164 | + signgamp = Int32(-1) |
| 165 | + return -log(-x), signgamp |
| 166 | + else |
| 167 | + return -log(x), signgamp |
| 168 | + end |
| 169 | + end |
| 170 | + if hx < 0 |
| 171 | + ix ≥ 0x43300000 && return 1.0 / 0.0, signgamp #= |x|>=2**52, must be -integer =# |
| 172 | + t = sinpi(x) |
| 173 | + t == 0.0 && return 1.0 / 0.0, signgamp #= -integer =# |
| 174 | + nadj = log(π / abs(t * x)) |
| 175 | + if t < 0.0; signgamp = Int32(-1); end |
| 176 | + x = -x |
| 177 | + end |
| 178 | + |
| 179 | + #= purge off 1 and 2 =# |
| 180 | + if ((ix - 0x3ff00000) | lx) == 0 || ((ix - 0x40000000) | lx) == 0 |
| 181 | + r = 0.0 |
| 182 | + #= for x < 2.0 =# |
| 183 | + elseif ix < 0x40000000 |
| 184 | + if ix ≤ 0x3feccccc #= lgamma(x) = lgamma(x+1)-log(x) =# |
| 185 | + r = -log(x) |
| 186 | + if ix ≥ 0x3FE76944 |
| 187 | + y = 1.0 - x |
| 188 | + i = Int8(0) |
| 189 | + elseif ix ≥ 0x3FCDA661 |
| 190 | + y = x - (tc - 1.0) |
| 191 | + i = Int8(1) |
| 192 | + else |
| 193 | + y = x |
| 194 | + i = Int8(2) |
| 195 | + end |
| 196 | + else |
| 197 | + r = 0.0 |
| 198 | + if ix ≥ 0x3FFBB4C3 #= [1.7316,2] =# |
| 199 | + y = 2.0 - x |
| 200 | + i = Int8(0) |
| 201 | + elseif ix ≥ 0x3FF3B4C4 #= [1.23,1.73] =# |
| 202 | + y = x - tc |
| 203 | + i = Int8(1) |
| 204 | + else |
| 205 | + y = x - 1.0 |
| 206 | + i = Int8(2) |
| 207 | + end |
| 208 | + end |
| 209 | + if i == Int8(0) |
| 210 | + z = y*y; |
| 211 | + p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
| 212 | + p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
| 213 | + p = y*p1+p2; |
| 214 | + r += (p-0.5*y); |
| 215 | + elseif i == Int8(1) |
| 216 | + z = y*y; |
| 217 | + w = z*y; |
| 218 | + p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); #= parallel comp =# |
| 219 | + p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
| 220 | + p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
| 221 | + p = z*p1-(tt-w*(p2+y*p3)); |
| 222 | + r += (tf + p) |
| 223 | + elseif i == Int8(2) |
| 224 | + p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
| 225 | + p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
| 226 | + r += (-0.5*y + p1/p2); |
| 227 | + end |
| 228 | + elseif ix < 0x40200000 #= x < 8.0 =# |
| 229 | + i = Base.unsafe_trunc(Int8, x) |
| 230 | + y = x - float(i) |
| 231 | + # If performed here, performance is 2x worse; hence, move it below. |
| 232 | + # p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
| 233 | + # q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
| 234 | + # r = 0.5*y+p/q; |
| 235 | + z = 1.0; #= lgamma(1+s) = log(s) + lgamma(s) =# |
| 236 | + if i == Int8(7) |
| 237 | + z *= (y + 6.0) |
| 238 | + @goto case6 |
| 239 | + elseif i == Int8(6) |
| 240 | + @label case6 |
| 241 | + z *= (y + 5.0) |
| 242 | + @goto case5 |
| 243 | + elseif i == Int8(5) |
| 244 | + @label case5 |
| 245 | + z *= (y + 4.0) |
| 246 | + @goto case4 |
| 247 | + elseif i == Int8(4) |
| 248 | + @label case4 |
| 249 | + z *= (y + 3.0) |
| 250 | + @goto case3 |
| 251 | + elseif i == Int8(3) |
| 252 | + @label case3 |
| 253 | + z *= (y + 2.0) |
| 254 | + end |
| 255 | + # r += log(z) |
| 256 | + p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
| 257 | + q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
| 258 | + r = log(z) + 0.5*y+p/q; |
| 259 | + #= 8.0 ≤ x < 2^58 =# |
| 260 | + elseif ix < 0x43900000 |
| 261 | + t = log(x) |
| 262 | + z = 1.0 / x |
| 263 | + y = z * z |
| 264 | + w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
| 265 | + r = (x-0.5)*(t-1.0)+w; |
| 266 | + else |
| 267 | + #= 2^58 ≤ x ≤ Inf =# |
| 268 | + r = x * (log(x) - 1.0) |
| 269 | + end |
| 270 | + if hx < 0 |
| 271 | + r = nadj - r |
| 272 | + end |
| 273 | + return r, signgamp |
| 274 | +end |
| 275 | + |
| 276 | +# Deviates from OpenLibm: throws instead of returning negative sign; approximately 25% faster |
| 277 | +# when sign is not needed in subsequent computations. |
| 278 | +function _loggamma_r(x::Float64) |
| 279 | + u = reinterpret(UInt64, x) |
| 280 | + hx = (u >>> 32) % Int32 |
| 281 | + lx = u % Int32 |
| 282 | + |
| 283 | + #= purge off +-inf, NaN, +-0, tiny and negative arguments =# |
| 284 | + ix = signed(hx & 0x7fffffff) |
| 285 | + ix ≥ 0x7ff00000 && return x * x |
| 286 | + ix | lx == 0 && return 1.0 / 0.0 |
| 287 | + if ix < 0x3b900000 #= |x|<2**-70, return -log(|x|) =# |
| 288 | + if hx < 0 |
| 289 | + # return -log(-x) |
| 290 | + throw(DomainError(x, "`gamma(x)` must be non-negative")) |
| 291 | + else |
| 292 | + return -log(x) |
| 293 | + end |
| 294 | + end |
| 295 | + if hx < 0 |
| 296 | + ix ≥ 0x43300000 && return 1.0 / 0.0 #= |x|>=2**52, must be -integer =# |
| 297 | + t = sinpi(x) |
| 298 | + t == 0.0 && return 1.0 / 0.0 #= -integer =# |
| 299 | + nadj = log(π / abs(t * x)) |
| 300 | + t < 0.0 && throw(DomainError(x, "`gamma(x)` must be non-negative")) |
| 301 | + x = -x |
| 302 | + end |
| 303 | + |
| 304 | + #= purge off 1 and 2 =# |
| 305 | + if ((ix - 0x3ff00000) | lx) == 0 || ((ix - 0x40000000) | lx) == 0 |
| 306 | + r = 0.0 |
| 307 | + #= for x < 2.0 =# |
| 308 | + elseif ix < 0x40000000 |
| 309 | + if ix ≤ 0x3feccccc #= lgamma(x) = lgamma(x+1)-log(x) =# |
| 310 | + r = -log(x) |
| 311 | + if ix ≥ 0x3FE76944 |
| 312 | + y = 1.0 - x |
| 313 | + i = Int8(0) |
| 314 | + elseif ix ≥ 0x3FCDA661 |
| 315 | + y = x - (tc - 1.0) |
| 316 | + i = Int8(1) |
| 317 | + else |
| 318 | + y = x |
| 319 | + i = Int8(2) |
| 320 | + end |
| 321 | + else |
| 322 | + r = 0.0 |
| 323 | + if ix ≥ 0x3FFBB4C3 #= [1.7316,2] =# |
| 324 | + y = 2.0 - x |
| 325 | + i = Int8(0) |
| 326 | + elseif ix ≥ 0x3FF3B4C4 #= [1.23,1.73] =# |
| 327 | + y = x - tc |
| 328 | + i = Int8(1) |
| 329 | + else |
| 330 | + y = x - 1.0 |
| 331 | + i = Int8(2) |
| 332 | + end |
| 333 | + end |
| 334 | + if i == Int8(0) |
| 335 | + z = y*y; |
| 336 | + p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
| 337 | + p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
| 338 | + p = y*p1+p2; |
| 339 | + r += (p-0.5*y); |
| 340 | + elseif i == Int8(1) |
| 341 | + z = y*y; |
| 342 | + w = z*y; |
| 343 | + p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); #= parallel comp =# |
| 344 | + p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
| 345 | + p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
| 346 | + p = z*p1-(tt-w*(p2+y*p3)); |
| 347 | + r += (tf + p) |
| 348 | + elseif i == Int8(2) |
| 349 | + p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
| 350 | + p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
| 351 | + r += (-0.5*y + p1/p2); |
| 352 | + end |
| 353 | + elseif ix < 0x40200000 #= x < 8.0 =# |
| 354 | + i = Base.unsafe_trunc(Int8, x) |
| 355 | + y = x - float(i) |
| 356 | + # If performed here, performance is 2x worse; hence, move it below. |
| 357 | + # p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
| 358 | + # q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
| 359 | + # r = 0.5*y+p/q; |
| 360 | + z = 1.0; #= lgamma(1+s) = log(s) + lgamma(s) =# |
| 361 | + if i == Int8(7) |
| 362 | + z *= (y + 6.0) |
| 363 | + @goto case6 |
| 364 | + elseif i == Int8(6) |
| 365 | + @label case6 |
| 366 | + z *= (y + 5.0) |
| 367 | + @goto case5 |
| 368 | + elseif i == Int8(5) |
| 369 | + @label case5 |
| 370 | + z *= (y + 4.0) |
| 371 | + @goto case4 |
| 372 | + elseif i == Int8(4) |
| 373 | + @label case4 |
| 374 | + z *= (y + 3.0) |
| 375 | + @goto case3 |
| 376 | + elseif i == Int8(3) |
| 377 | + @label case3 |
| 378 | + z *= (y + 2.0) |
| 379 | + end |
| 380 | + # r += log(z) |
| 381 | + p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
| 382 | + q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
| 383 | + r = log(z) + 0.5*y+p/q; |
| 384 | + #= 8.0 ≤ x < 2^58 =# |
| 385 | + elseif ix < 0x43900000 |
| 386 | + t = log(x) |
| 387 | + z = 1.0 / x |
| 388 | + y = z * z |
| 389 | + w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
| 390 | + r = (x-0.5)*(t-1.0)+w; |
| 391 | + else |
| 392 | + #= 2^58 ≤ x ≤ Inf =# |
| 393 | + r = x * (log(x) - 1.0) |
| 394 | + end |
| 395 | + if hx < 0 |
| 396 | + r = nadj - r |
| 397 | + end |
| 398 | + return r |
| 399 | +end |
0 commit comments