Skip to content

Commit 7d698db

Browse files
authored
Update badges and use LaTeX for math
- We're using GHA + Codecov rather than Travis + Coveralls - GitHub now renders LaTeX math in Markdown
1 parent 20458e4 commit 7d698db

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

README.md

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,12 @@
22

33
A general framework for fast Fourier transforms (FFTs) in Julia.
44

5-
[![Travis](https://travis-ci.org/JuliaMath/AbstractFFTs.jl.svg?branch=master)](https://travis-ci.org/JuliaMath/AbstractFFTs.jl)
6-
[![Coveralls](https://coveralls.io/repos/github/JuliaMath/AbstractFFTs.jl/badge.svg?branch=master)](https://coveralls.io/github/JuliaMath/AbstractFFTs.jl?branch=master)
5+
[![GHA](https://github.com/JuliaMath/AbstractFFTs.jl/workflows/CI/badge.svg)](https://github.com/JuliaMath/AbstractFFTs.jl/actions?query=workflow%3ACI+branch%3Amaster)
6+
[![Codecov](http://codecov.io/github/JuliaMath/AbstractFFTs.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaMath/AbstractFFTs.jl?branch=master)
77

88
Documentation:
99
[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaMath.github.io/AbstractFFTs.jl/stable)
10-
[![](https://img.shields.io/badge/docs-latest-blue.svg)](https://JuliaMath.github.io/AbstractFFTs.jl/latest)
10+
[![](https://img.shields.io/badge/docs-latest-blue.svg)](https://JuliaMath.github.io/AbstractFFTs.jl/dev)
1111

1212
This package is mainly not intended to be used directly.
1313
Instead, developers of packages that implement FFTs (such as [FFTW.jl](https://github.com/JuliaMath/FFTW.jl) or [FastTransforms.jl](https://github.com/JuliaApproximation/FastTransforms.jl))
@@ -36,5 +36,6 @@ To define a new FFT implementation in your own module, you should
3636

3737
* You can also define similar methods of `plan_rfft` and `plan_brfft` for real-input FFTs.
3838

39-
The normalization convention for your FFT should be that it computes yₖ = ∑ⱼ xⱼ exp(-2πi jk/n) for a transform of
40-
length n, and the "backwards" (unnormalized inverse) transform computes the same thing but with exp(+2πi jk/n).
39+
The normalization convention for your FFT should be that it computes $y_k = \sum_j \exp\(-2 \pi i \cdot \frac{j k}{n}\)$
40+
for a transform of length $n$, and the "backwards" (unnormalized inverse) transform computes the same thing but with
41+
$\exp\(+2 \pi i \cdot \frac{j k}{n}\)$.

0 commit comments

Comments
 (0)