You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/src/implementations.md
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -34,7 +34,7 @@ To define a new FFT implementation in your own module, you should
34
34
35
35
* We offer an experimental `AdjointStyle` trait to enable automatic computation of adjoint plans via [`Base.adjoint`](@ref),
36
36
(which `AbstractFFTs` uses to implement reverse-mode differentiation rules). To support adjoints in a new plan, define the trait `AbstractFFTs.AdjointStyle(::MyPlan)`. This should return a subtype of `AS <: AbstractFFTs.AdjointStyle` supporting `AbstractFFTs.adjoint_mul(::AdjointPlan, ::AbstractArray, ::AS)`. `AbstractFFTs` pre-implements [`AbstractFFTs.FFTAdjointStyle`](@ref), [`AbstractFFTs.RFFTAdjointStyle`](@ref),
37
-
[`AbstractFFTs.BRFFTAdjointStyle`](@ref), and [`AbstractFFTs.UnitaryAdjointStyle`](@ref).
37
+
[`AbstractFFTs.IRFFTAdjointStyle`](@ref), and [`AbstractFFTs.UnitaryAdjointStyle`](@ref).
38
38
39
39
The normalization convention for your FFT should be that it computes ``y_k = \sum_j x_j \exp(-2\pi i j k/n)`` for a transform of
40
40
length ``n``, and the "backwards" (unnormalized inverse) transform computes the same thing but with ``\exp(+2\pi i jk/n)``.
0 commit comments