Skip to content

Commit 1ed130b

Browse files
kshyattKristofferC
authored andcommitted
Add xrefs and some missing example headers
1 parent 10def15 commit 1ed130b

File tree

7 files changed

+22
-20
lines changed

7 files changed

+22
-20
lines changed

stdlib/LinearAlgebra/src/bunchkaufman.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ end
120120
121121
Compute the Bunch-Kaufman [^Bunch1977] factorization of a symmetric or
122122
Hermitian matrix `A` as `P'*U*D*U'*P` or `P'*L*D*L'*P`, depending on
123-
which triangle is stored in `A`, and return a `BunchKaufman` object.
123+
which triangle is stored in `A`, and return a [`BunchKaufman`](@ref) object.
124124
Note that if `A` is complex symmetric then `U'` and `L'` denote
125125
the unconjugated transposes, i.e. `transpose(U)` and `transpose(L)`.
126126

stdlib/LinearAlgebra/src/cholesky.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -302,8 +302,8 @@ end
302302
cholesky(A, Val(false); check = true) -> Cholesky
303303
304304
Compute the Cholesky factorization of a dense symmetric positive definite matrix `A`
305-
and return a `Cholesky` factorization. The matrix `A` can either be a [`Symmetric`](@ref) or [`Hermitian`](@ref)
306-
`StridedMatrix` or a *perfectly* symmetric or Hermitian `StridedMatrix`.
305+
and return a [`Cholesky`](@ref) factorization. The matrix `A` can either be a [`Symmetric`](@ref) or [`Hermitian`](@ref)
306+
[`StridedMatrix`](@ref) or a *perfectly* symmetric or Hermitian `StridedMatrix`.
307307
The triangular Cholesky factor can be obtained from the factorization `F` with: `F.L` and `F.U`.
308308
The following functions are available for `Cholesky` objects: [`size`](@ref), [`\\`](@ref),
309309
[`inv`](@ref), [`det`](@ref), [`logdet`](@ref) and [`isposdef`](@ref).
@@ -353,8 +353,8 @@ cholesky(A::Union{StridedMatrix,RealHermSymComplexHerm{<:Real,<:StridedMatrix}},
353353
cholesky(A, Val(true); tol = 0.0, check = true) -> CholeskyPivoted
354354
355355
Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix `A`
356-
and return a `CholeskyPivoted` factorization. The matrix `A` can either be a [`Symmetric`](@ref)
357-
or [`Hermitian`](@ref) `StridedMatrix` or a *perfectly* symmetric or Hermitian `StridedMatrix`.
356+
and return a [`CholeskyPivoted`](@ref) factorization. The matrix `A` can either be a [`Symmetric`](@ref)
357+
or [`Hermitian`](@ref) [`StridedMatrix`](@ref) or a *perfectly* symmetric or Hermitian `StridedMatrix`.
358358
The triangular Cholesky factor can be obtained from the factorization `F` with: `F.L` and `F.U`.
359359
The following functions are available for `CholeskyPivoted` objects:
360360
[`size`](@ref), [`\\`](@ref), [`inv`](@ref), [`det`](@ref), and [`rank`](@ref).

stdlib/LinearAlgebra/src/eigen.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -179,7 +179,7 @@ end
179179
"""
180180
eigen(A; permute::Bool=true, scale::Bool=true, sortby) -> Eigen
181181
182-
Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
182+
Computes the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
183183
which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
184184
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
185185
@@ -195,7 +195,7 @@ make rows and columns more equal in norm. The default is `true` for both options
195195
By default, the eigenvalues and vectors are sorted lexicographically by `(real(λ),imag(λ))`.
196196
A different comparison function `by(λ)` can be passed to `sortby`, or you can pass
197197
`sortby=nothing` to leave the eigenvalues in an arbitrary order. Some special matrix types
198-
(e.g. `Diagonal` or `SymTridiagonal`) may implement their own sorting convention and not
198+
(e.g. [`Diagonal`](@ref) or [`SymTridiagonal`](@ref)) may implement their own sorting convention and not
199199
accept a `sortby` keyword.
200200
201201
# Examples
@@ -457,7 +457,7 @@ end
457457
eigen(A, B) -> GeneralizedEigen
458458
459459
Computes the generalized eigenvalue decomposition of `A` and `B`, returning a
460-
`GeneralizedEigen` factorization object `F` which contains the generalized eigenvalues in
460+
[`GeneralizedEigen`](@ref) factorization object `F` which contains the generalized eigenvalues in
461461
`F.values` and the generalized eigenvectors in the columns of the matrix `F.vectors`.
462462
(The `k`th generalized eigenvector can be obtained from the slice `F.vectors[:, k]`.)
463463

stdlib/LinearAlgebra/src/lq.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
LQ <: Factorization
66
77
Matrix factorization type of the `LQ` factorization of a matrix `A`. The `LQ`
8-
decomposition is the `QR` decomposition of `transpose(A)`. This is the return
8+
decomposition is the [`QR`](@ref) decomposition of `transpose(A)`. This is the return
99
type of [`lq`](@ref), the corresponding matrix factorization function.
1010
1111
If `S::LQ` is the factorization object, the lower triangular component can be
@@ -67,15 +67,15 @@ LQPackedQ(factors::AbstractMatrix{T}, τ::Vector{T}) where {T} = LQPackedQ{T,typ
6767
"""
6868
lq!(A) -> LQ
6969
70-
Compute the LQ factorization of `A`, using the input
70+
Compute the [`LQ`](@ref) factorization of `A`, using the input
7171
matrix as a workspace. See also [`lq`](@ref).
7272
"""
7373
lq!(A::StridedMatrix{<:BlasFloat}) = LQ(LAPACK.gelqf!(A)...)
7474
"""
7575
lq(A) -> S::LQ
7676
7777
Compute the LQ decomposition of `A`. The decomposition's lower triangular
78-
component can be obtained from the `LQ` object `S` via `S.L`, and the
78+
component can be obtained from the [`LQ`](@ref) object `S` via `S.L`, and the
7979
orthogonal/unitary component via `S.Q`, such that `A ≈ S.L*S.Q`.
8080
8181
Iterating the decomposition produces the components `S.L` and `S.Q`.

stdlib/LinearAlgebra/src/lu.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
Matrix factorization type of the `LU` factorization of a square matrix `A`. This
1010
is the return type of [`lu`](@ref), the corresponding matrix factorization function.
1111
12-
The individual components of the factorization `F::LU` can be accessed via `getproperty`:
12+
The individual components of the factorization `F::LU` can be accessed via [`getproperty`](@ref):
1313
1414
| Component | Description |
1515
|:----------|:-----------------------------------------|
@@ -210,10 +210,10 @@ validity (via [`issuccess`](@ref)) lies with the user.
210210
211211
In most cases, if `A` is a subtype `S` of `AbstractMatrix{T}` with an element
212212
type `T` supporting `+`, `-`, `*` and `/`, the return type is `LU{T,S{T}}`. If
213-
pivoting is chosen (default) the element type should also support `abs` and
214-
`<`.
213+
pivoting is chosen (default) the element type should also support [`abs`](@ref) and
214+
[`<`](@ref).
215215
216-
The individual components of the factorization `F` can be accessed via `getproperty`:
216+
The individual components of the factorization `F` can be accessed via [`getproperty`](@ref):
217217
218218
| Component | Description |
219219
|:----------|:------------------------------------|

stdlib/LinearAlgebra/src/qr.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -256,7 +256,7 @@ qr!(A::StridedMatrix{<:BlasFloat}, ::Val{true}) = QRPivoted(LAPACK.geqp3!(A)...)
256256
qr!(A, pivot=Val(false); blocksize)
257257
258258
`qr!` is the same as [`qr`](@ref) when `A` is a subtype of
259-
`StridedMatrix`, but saves space by overwriting the input `A`, instead of creating a copy.
259+
[`StridedMatrix`](@ref), but saves space by overwriting the input `A`, instead of creating a copy.
260260
An [`InexactError`](@ref) exception is thrown if the factorization produces a number not
261261
representable by the element type of `A`, e.g. for integer types.
262262

stdlib/LinearAlgebra/src/symmetric.jl

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -668,15 +668,15 @@ eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange)
668668
"""
669669
eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen
670670
671-
Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
671+
Computes the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
672672
which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
673673
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
674674
675675
Iterating the decomposition produces the components `F.values` and `F.vectors`.
676676
677677
The following functions are available for `Eigen` objects: [`inv`](@ref), [`det`](@ref), and [`isposdef`](@ref).
678678
679-
The `UnitRange` `irange` specifies indices of the sorted eigenvalues to search for.
679+
The [`UnitRange`](@ref) `irange` specifies indices of the sorted eigenvalues to search for.
680680
681681
!!! note
682682
If `irange` is not `1:n`, where `n` is the dimension of `A`, then the returned factorization
@@ -694,7 +694,7 @@ eigen!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where {
694694
"""
695695
eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen
696696
697-
Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
697+
Computes the eigenvalue decomposition of `A`, returning an [`Eigen`](@ref) factorization object `F`
698698
which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
699699
matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
700700
@@ -736,9 +736,10 @@ eigvals!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRang
736736
eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values
737737
738738
Returns the eigenvalues of `A`. It is possible to calculate only a subset of the
739-
eigenvalues by specifying a `UnitRange` `irange` covering indices of the sorted eigenvalues,
739+
eigenvalues by specifying a [`UnitRange`](@ref) `irange` covering indices of the sorted eigenvalues,
740740
e.g. the 2nd to 8th eigenvalues.
741741
742+
# Examples
742743
```jldoctest
743744
julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])
744745
3×3 SymTridiagonal{Float64,Array{Float64,1}}:
@@ -778,6 +779,7 @@ eigvals!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where
778779
Returns the eigenvalues of `A`. It is possible to calculate only a subset of the eigenvalues
779780
by specifying a pair `vl` and `vu` for the lower and upper boundaries of the eigenvalues.
780781
782+
# Examples
781783
```jldoctest
782784
julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])
783785
3×3 SymTridiagonal{Float64,Array{Float64,1}}:

0 commit comments

Comments
 (0)