|
| 1 | +using LinearAlgebra, Test, Random |
| 2 | + |
| 3 | +tc(r1::NTuple{N,Any}, r2::NTuple{N,Any}) where {N} = all(x->tc(x...), [zip(r1,r2)...]) |
| 4 | +tc(r1::BitArray{N}, r2::Union{BitArray{N},Array{Bool,N}}) where {N} = true |
| 5 | +tc(r1::SubArray{Bool,N1,BitArray{N2}}, r2::SubArray{Bool,N1,<:Union{BitArray{N2},Array{Bool,N2}}}) where {N1,N2} = true |
| 6 | +tc(r1::Transpose{Bool,BitVector}, r2::Union{Transpose{Bool,BitVector},Transpose{Bool,Vector{Bool}}}) = true |
| 7 | +tc(r1::T, r2::T) where {T} = true |
| 8 | +tc(r1,r2) = false |
| 9 | + |
| 10 | +# vectors size |
| 11 | +const v1 = 260 |
| 12 | +# matrices size |
| 13 | +const n1, n2 = 17, 20 |
| 14 | +# arrays size |
| 15 | +const s1, s2, s3, s4 = 5, 8, 3, 7 |
| 16 | + |
| 17 | +bitcheck(b::BitArray) = Test._check_bitarray_consistency(b) |
| 18 | +bitcheck(x) = true |
| 19 | + |
| 20 | +function check_bitop_call(ret_type, func, args...; kwargs...) |
| 21 | + r2 = func(map(x->(isa(x, BitArray) ? Array(x) : x), args)...; kwargs...) |
| 22 | + r1 = func(args...; kwargs...) |
| 23 | + ret_type ≢ nothing && (@test isa(r1, ret_type) || @show ret_type, typeof(r1)) |
| 24 | + @test tc(r1, r2) |
| 25 | + @test isequal(r1, r2) |
| 26 | + @test bitcheck(r1) |
| 27 | +end |
| 28 | +macro check_bit_operation(ex, ret_type) |
| 29 | + @assert Meta.isexpr(ex, :call) |
| 30 | + Expr(:call, :check_bitop_call, esc(ret_type), map(esc, ex.args)...) |
| 31 | +end |
| 32 | +macro check_bit_operation(ex) |
| 33 | + @assert Meta.isexpr(ex, :call) |
| 34 | + Expr(:call, :check_bitop_call, nothing, map(esc, ex.args)...) |
| 35 | +end |
| 36 | + |
| 37 | + |
| 38 | +b1 = bitrand(v1) |
| 39 | +b2 = bitrand(v1) |
| 40 | +@check_bit_operation dot(b1, b2) Int |
| 41 | + |
| 42 | +b1 = bitrand(n1, n2) |
| 43 | +@test_throws ArgumentError tril(b1, -n1 - 2) |
| 44 | +@test_throws ArgumentError tril(b1, n2) |
| 45 | +@test_throws ArgumentError triu(b1, -n1) |
| 46 | +@test_throws ArgumentError triu(b1, n2 + 2) |
| 47 | +for k in (-n1 - 1):(n2 - 1) |
| 48 | + @check_bit_operation tril(b1, k) BitMatrix |
| 49 | +end |
| 50 | +for k in (-n1 + 1):(n2 + 1) |
| 51 | + @check_bit_operation triu(b1, k) BitMatrix |
| 52 | +end |
| 53 | + |
| 54 | +for sz = [(n1,n1), (n1,n2), (n2,n1)], (f,isf) = [(tril,istril), (triu,istriu)] |
| 55 | + _b1 = bitrand(sz...) |
| 56 | + @check_bit_operation isf(_b1) Bool |
| 57 | + _b1 = f(bitrand(sz...)) |
| 58 | + @check_bit_operation isf(_b1) Bool |
| 59 | +end |
| 60 | + |
| 61 | +b1 = bitrand(n1,n1) |
| 62 | +b1 .|= copy(b1') |
| 63 | +@check_bit_operation issymmetric(b1) Bool |
| 64 | +@check_bit_operation ishermitian(b1) Bool |
| 65 | + |
| 66 | +b1 = bitrand(n1) |
| 67 | +b2 = bitrand(n2) |
| 68 | +@check_bit_operation kron(b1, b2) BitVector |
| 69 | + |
| 70 | +b1 = bitrand(s1, s2) |
| 71 | +b2 = bitrand(s3, s4) |
| 72 | +@check_bit_operation kron(b1, b2) BitMatrix |
| 73 | + |
| 74 | +b1 = bitrand(v1) |
| 75 | +@check_bit_operation diff(b1) Vector{Int} |
| 76 | + |
| 77 | +b1 = bitrand(n1, n2) |
| 78 | +@check_bit_operation diff(b1, dims=1) Matrix{Int} |
| 79 | +@check_bit_operation diff(b1, dims=2) Matrix{Int} |
| 80 | + |
| 81 | +b1 = bitrand(n1, n1) |
| 82 | +@test ((svdb1, svdb1A) = (svd(b1), svd(Array(b1))); |
| 83 | + svdb1.U == svdb1A.U && svdb1.S == svdb1A.S && svdb1.V == svdb1A.V) |
| 84 | +@test ((qrb1, qrb1A) = (qr(b1), qr(Array(b1))); |
| 85 | + Matrix(qrb1.Q) == Matrix(qrb1A.Q) && qrb1.R == qrb1A.R) |
| 86 | + |
| 87 | +b1 = bitrand(v1) |
| 88 | +@check_bit_operation diagm(0 => b1) BitMatrix |
| 89 | + |
| 90 | +b1 = bitrand(v1) |
| 91 | +b2 = bitrand(v1) |
| 92 | +@check_bit_operation diagm(-1 => b1, 1 => b2) BitMatrix |
| 93 | + |
| 94 | +b1 = bitrand(n1, n1) |
| 95 | +@check_bit_operation diag(b1) |
0 commit comments