@@ -137,13 +137,13 @@ end
137
137
◥ = UpperTriangular (rand (N,N))
138
138
M = Matrix (rand (N,N))
139
139
140
- @test broadcast! (sin, copy (D), D) == Diagonal ( sin .(D))
141
- @test broadcast! (sin, copy (Bu), Bu) == Bidiagonal ( sin .(Bu), :U )
142
- @test broadcast! (sin, copy (Bl), Bl) == Bidiagonal ( sin .(Bl), :L )
143
- @test broadcast! (sin, copy (T), T) == Tridiagonal ( sin .(T))
144
- @test broadcast! (sin, copy (◣), ◣) == LowerTriangular ( sin .(◣))
145
- @test broadcast! (sin, copy (◥), ◥) == UpperTriangular ( sin .(◥))
146
- @test broadcast! (sin, copy (M), M) == Matrix ( sin .(M))
140
+ @test broadcast! (sin, copy (D), D):: Diagonal == sin .(D):: Diagonal
141
+ @test broadcast! (sin, copy (Bu), Bu):: Bidiagonal == sin .(Bu):: Bidiagonal
142
+ @test broadcast! (sin, copy (Bl), Bl):: Bidiagonal == sin .(Bl):: Bidiagonal
143
+ @test broadcast! (sin, copy (T), T):: Tridiagonal == sin .(T):: Tridiagonal
144
+ @test broadcast! (sin, copy (◣), ◣):: LowerTriangular == sin .(◣):: LowerTriangular
145
+ @test broadcast! (sin, copy (◥), ◥):: UpperTriangular == sin .(◥):: UpperTriangular
146
+ @test broadcast! (sin, copy (M), M):: Matrix == sin .(M):: Matrix
147
147
@test broadcast! (* , copy (D), D, A) == Diagonal (broadcast (* , D, A))
148
148
@test broadcast! (* , copy (Bu), Bu, A) == Bidiagonal (broadcast (* , Bu, A), :U )
149
149
@test broadcast! (* , copy (Bl), Bl, A) == Bidiagonal (broadcast (* , Bl, A), :L )
0 commit comments