@@ -177,29 +177,6 @@ function \(U::UnitUpperTriangular, H::UpperHessenberg)
177
177
UpperHessenberg (HH)
178
178
end
179
179
180
- function (\ )(H:: Union{UpperHessenberg,AdjOrTrans{<:Any,<:UpperHessenberg}} , B:: AbstractVecOrMat )
181
- TFB = typeof (oneunit (eltype (H)) \ oneunit (eltype (B)))
182
- return ldiv! (H, copy_similar (B, TFB))
183
- end
184
-
185
- function (/ )(B:: AbstractMatrix , H:: Union{UpperHessenberg,AdjOrTrans{<:Any,<:UpperHessenberg}} )
186
- TFB = typeof (oneunit (eltype (B)) / oneunit (eltype (H)))
187
- return rdiv! (copy_similar (B, TFB), H)
188
- end
189
-
190
- ldiv! (H:: AdjOrTrans{<:Any,<:UpperHessenberg} , B:: AbstractVecOrMat ) =
191
- (rdiv! (wrapperop (H)(B), parent (H)); B)
192
- rdiv! (B:: AbstractVecOrMat , H:: AdjOrTrans{<:Any,<:UpperHessenberg} ) =
193
- (ldiv! (parent (H), wrapperop (H)(B)); B)
194
-
195
- # fix method ambiguities for right division, from adjtrans.jl:
196
- / (u:: AdjointAbsVec , A:: UpperHessenberg ) = adjoint (adjoint (A) \ u. parent)
197
- / (u:: TransposeAbsVec , A:: UpperHessenberg ) = transpose (transpose (A) \ u. parent)
198
- / (u:: AdjointAbsVec , A:: Adjoint{<:Any,<:UpperHessenberg} ) = adjoint (adjoint (A) \ u. parent)
199
- / (u:: TransposeAbsVec , A:: Transpose{<:Any,<:UpperHessenberg} ) = transpose (transpose (A) \ u. parent)
200
- / (u:: AdjointAbsVec , A:: Transpose{<:Any,<:UpperHessenberg} ) = adjoint (conj (A. parent) \ u. parent) # technically should be adjoint(copy(adjoint(copy(A))) \ u.parent)
201
- / (u:: TransposeAbsVec , A:: Adjoint{<:Any,<:UpperHessenberg} ) = transpose (conj (A. parent) \ u. parent)
202
-
203
180
# Solving (H+µI)x = b: we can do this in O(m²) time and O(m) memory
204
181
# (in-place in x) by the RQ algorithm from:
205
182
#
0 commit comments