From 96ceac37c67c56b1fcf3909e4bf1d178a5622608 Mon Sep 17 00:00:00 2001 From: JKay <2439951158@qq.com> Date: Thu, 16 Sep 2021 14:04:32 +0800 Subject: [PATCH 1/6] add the Chan-Vese Segmentation for Gray --- src/chan_vese.jl | 252 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 252 insertions(+) create mode 100644 src/chan_vese.jl diff --git a/src/chan_vese.jl b/src/chan_vese.jl new file mode 100644 index 0000000..108e98f --- /dev/null +++ b/src/chan_vese.jl @@ -0,0 +1,252 @@ +using MosaicViews +using LazyArrays +using BenchmarkTools +using Images, TestImages +using ImageBase.ImageCore: GenericGrayImage, GenericImage + +function calculate_averages(img::AbstractArray{T, N}, H𝚽::AbstractArray{T, M}) where {T<:Real, N, M} + H𝚽ⁱ = @. 1. - H𝚽 + ∫H𝚽 = sum(H𝚽) + ∫H𝚽ⁱ = sum(H𝚽ⁱ) + if ndims(img) == 2 + ∫uβ‚€H𝚽 = sum(img .* H𝚽) + ∫uβ‚€H𝚽ⁱ = sum(img .* H𝚽ⁱ) + elseif ndims(img) == 3 + ∫uβ‚€H𝚽 = sum(img .* H𝚽, dims=(1, 2)) + ∫uβ‚€H𝚽ⁱ = sum(img .* H𝚽ⁱ, dims=(1, 2)) + end + if ∫H𝚽 != 0 + c₁ = ∫uβ‚€H𝚽 / ∫H𝚽 + end + if ∫H𝚽ⁱ != 0 + cβ‚‚ = ∫uβ‚€H𝚽ⁱ / ∫H𝚽ⁱ + end + + return c₁, cβ‚‚ +end + +function difference_from_average_term(img::AbstractArray{T, N}, H𝚽::AbstractArray{T, M}, λ₁::Float64, Ξ»β‚‚::Float64) where {T<:Real, N, M} + c₁, cβ‚‚ = calculate_averages(img, H𝚽) + + if ndims(img) == 2 + return @. -λ₁ * (img - c₁)^2 + Ξ»β‚‚ * (img - cβ‚‚)^2 + elseif ndims(img) == 3 + return -λ₁ .* sum((img .- c₁).^2, dims=3) .+ Ξ»β‚‚ .* sum((img .- cβ‚‚).^2, dims=3) + end +end +# H𝚽 = LazyArray(@~ @. 1. * (𝚽ⁿ > 0)) +function _calculate_averages(img::AbstractArray{T, N}, 𝚽ⁿ::AbstractArray{T, M}) where {T<:Real, N, M} + ∫H𝚽 = ∫H𝚽ⁱ = ∫uβ‚€H𝚽 = ∫uβ‚€H𝚽ⁱ = 0 + + for i in CartesianIndices(img) + H𝚽 = 1. * (𝚽ⁿ[i] > 0) + H𝚽ⁱ = 1. - H𝚽 + ∫H𝚽 += H𝚽 + ∫H𝚽ⁱ += H𝚽ⁱ + ∫uβ‚€H𝚽 += img[i] * H𝚽 + ∫uβ‚€H𝚽ⁱ += img[i] * H𝚽ⁱ + end + if ∫H𝚽 != 0 + c₁ = ∫uβ‚€H𝚽 ./ ∫H𝚽 + end + if ∫H𝚽ⁱ != 0 + cβ‚‚ = ∫uβ‚€H𝚽ⁱ ./ ∫H𝚽ⁱ + end + + return c₁, cβ‚‚ +end + +function Ξ΄β‚•(x::AbstractArray{T,N}, h::Float64=1.0) where {T<:Real, N} + return @~ @. h / (h^2 + x^2) +end + +function initial_level_set(shape::Tuple) + xβ‚€ = reshape(collect(0:shape[begin]-1), shape[begin], 1) + yβ‚€ = reshape(collect(0:shape[begin+1]-1), 1, shape[begin+1]) + πš½β‚€ = @. sin(pi / 5 * xβ‚€) * sin(pi / 5 * yβ‚€) +end + +function chan_vese(img::GenericGrayImage; + ΞΌ::Float64=0.25, + λ₁::Float64=1.0, + Ξ»β‚‚::Float64=1.0, + tol::Float64=1e-3, + max_iter::Int64=500, + Ξ”t::Float64=0.5, + reinitial_flag::Bool=false) #where {T<:Real, N} + img = float64.(channelview(img)) + iter = 0 + h = 1.0 + m, n = size(img) + s = m * n + 𝚽ⁿ = initial_level_set((m, n)) # size: m * n + del = tol + 1 + img .= img .- minimum(img) + + if maximum(img) != 0 + img .= img ./ maximum(img) + end + + diff = 0 + H𝚽 = similar(𝚽ⁿ) + uβ‚€H𝚽 = similar(img) + ∫uβ‚€ = sum(img) + πš½α΅’β‚ŠαΆœ = zeros(m, 1) + + + + while (del > tol) & (iter < max_iter) + Ο΅ = 1e-16 + + @. H𝚽 = 1. * (𝚽ⁿ > 0) # size = (m, n) + @. uβ‚€H𝚽 = img * H𝚽 # size = (m, n) or (m, n, 3) + + ∫H𝚽 = sum(H𝚽) + ∫uβ‚€H𝚽 = sum(uβ‚€H𝚽) # (1,) + ∫H𝚽ⁱ = s - ∫H𝚽 + ∫uβ‚€H𝚽ⁱ = ∫uβ‚€ - ∫uβ‚€H𝚽 + + if ∫H𝚽 != 0 + c₁ = ∫uβ‚€H𝚽 ./ ∫H𝚽 + end + if ∫H𝚽ⁱ != 0 + cβ‚‚ = ∫uβ‚€H𝚽ⁱ ./ ∫H𝚽ⁱ + end + + ind = CartesianIndices(reshape(collect(1 : 9), 3, 3)) .- CartesianIndex(2, 2) + πš½β±Όβ‚Š = 0 + + for y in 1:n-1 + πš½β±Όβ‚Š = 0 + for x in 1:m-1 + i = CartesianIndex(x, y) + πš½β‚€ = 𝚽ⁿ[i] + uβ‚€ = img[i] + πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] + πš½α΅’β‚ŠαΆœ[i[1]] = πš½α΅’β‚Š = 𝚽ⁿ[i + ind[2, 3]] - πš½β‚€ # except i[2] = n + πš½β±Όβ‚‹ = πš½β±Όβ‚Š + πš½β±Όβ‚Š = 𝚽ⁿ[i + ind[3, 2]] - πš½β‚€ # except i[2] = m + 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ + 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ + t1 = πš½β‚€ + πš½α΅’β‚Š + t2 = πš½β‚€ - πš½α΅’β‚‹ + t3 = πš½β‚€ + πš½β±Όβ‚Š + t4 = πš½β‚€ - πš½β±Όβ‚‹ + + C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) + Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) + C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) + Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) + + K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ + Ξ΄β‚• = h / (h^2 + πš½β‚€^2) + + 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) + diff += (𝚽 - πš½β‚€)^2 + end + i = CartesianIndex(m, y) + πš½β‚€ = 𝚽ⁿ[i] + uβ‚€ = img[i] + πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] + πš½α΅’β‚ŠαΆœ[i[1]] = πš½α΅’β‚Š = 𝚽ⁿ[i + ind[2, 3]] - πš½β‚€ # except i[2] = n + πš½β±Όβ‚‹ = πš½β±Όβ‚Š + πš½β±Όβ‚Š = 0 # except i[2] = m + 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ + 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ + t1 = πš½β‚€ + πš½α΅’β‚Š + t2 = πš½β‚€ - πš½α΅’β‚‹ + t3 = πš½β‚€ + πš½β±Όβ‚Š + t4 = πš½β‚€ - πš½β±Όβ‚‹ + + C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) + Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) + C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) + Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) + + K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ + Ξ΄β‚• = h / (h^2 + πš½β‚€^2) + + 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) + diff += (𝚽 - πš½β‚€)^2 + end + + πš½α΅’β‚Š = 0 + πš½β±Όβ‚Š = 0 + for x in 1:m-1 + i = CartesianIndex(x, n) + πš½β‚€ = 𝚽ⁿ[i] + uβ‚€ = img[i] + πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] + πš½α΅’β‚ŠαΆœ[i[1]] = 0 + πš½β±Όβ‚‹ = πš½β±Όβ‚Š + πš½β±Όβ‚Š = 𝚽ⁿ[i + ind[3, 2]] - πš½β‚€ # except i[2] = m + 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ + 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ + t1 = πš½β‚€ + πš½α΅’β‚Š + t2 = πš½β‚€ - πš½α΅’β‚‹ + t3 = πš½β‚€ + πš½β±Όβ‚Š + t4 = πš½β‚€ - πš½β±Όβ‚‹ + + C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) + Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) + C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) + Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) + + K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ + Ξ΄β‚• = h / (h^2 + πš½β‚€^2) + + 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) + diff += (𝚽 - πš½β‚€)^2 + end + i = CartesianIndex(m, n) + πš½β‚€ = 𝚽ⁿ[i] + uβ‚€ = img[i] + πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] + πš½α΅’β‚ŠαΆœ[i[1]] = 0 + πš½β±Όβ‚‹ = πš½β±Όβ‚Š + πš½β±Όβ‚Š = 0 + 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ + 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ + t1 = πš½β‚€ + πš½α΅’β‚Š + t2 = πš½β‚€ - πš½α΅’β‚‹ + t3 = πš½β‚€ + πš½β±Όβ‚Š + t4 = πš½β‚€ - πš½β±Όβ‚‹ + + C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) + Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) + C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) + Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) + + K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ + Ξ΄β‚• = h / (h^2 + πš½β‚€^2) + + 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) + diff += (𝚽 - πš½β‚€)^2 + + del = sqrt(diff / s) + diff = 0 + + iter += 1 + end + + return 𝚽ⁿ, iter +end + +img_gray = testimage("cameraman") + +ΞΌ=0.25 +λ₁=1.0 +Ξ»β‚‚=1.0 +tol=1e-3 +max_iter=200 +Ξ”t=0.5 + +𝚽, iter_num = chan_vese(img_gray, ΞΌ=0.25, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-3, max_iter=200, Ξ”t=0.5, reinitial_flag=false) + +@btime chan_vese(img_gray, ΞΌ=0.25, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-3, max_iter=200, Ξ”t=0.5, reinitial_flag=false); + +segmentation = 𝚽 .> 0 +print(iter_num) +𝚽 .= 𝚽 .- minimum(𝚽) + +colorview(Gray, segmentation) \ No newline at end of file From 982cfc4a25d8416eb692b003b254d03153d40905 Mon Sep 17 00:00:00 2001 From: JKay <2439951158@qq.com> Date: Tue, 21 Sep 2021 02:24:55 +0800 Subject: [PATCH 2/6] modify Chan-Vese Segmentation, add docs and simple test --- Project.toml | 5 +- src/ImageSegmentation.jl | 3 + src/chan_vese.jl | 436 +++++++++++++++-------------- test/chan_vese.jl | 13 + test/references/Chan_Vese_Gray.png | Bin 0 -> 466 bytes test/runtests.jl | 20 +- 6 files changed, 252 insertions(+), 225 deletions(-) create mode 100644 test/chan_vese.jl create mode 100644 test/references/Chan_Vese_Gray.png diff --git a/Project.toml b/Project.toml index a74201a..af3c74e 100644 --- a/Project.toml +++ b/Project.toml @@ -6,6 +6,7 @@ version = "1.6.0" Clustering = "aaaa29a8-35af-508c-8bc3-b662a17a0fe5" DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" +ImageBase = "c817782e-172a-44cc-b673-b171935fbb9e" ImageCore = "a09fc81d-aa75-5fe9-8630-4744c3626534" ImageFiltering = "6a3955dd-da59-5b1f-98d4-e7296123deb5" ImageMorphology = "787d08f9-d448-5407-9aad-5290dd7ab264" @@ -38,6 +39,8 @@ FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" ImageMagick = "6218d12a-5da1-5696-b52f-db25d2ecc6d1" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" +TestImages = "5e47fb64-e119-507b-a336-dd2b206d9990" +ImageTransformations = "02fcd773-0e25-5acc-982a-7f6622650795" [targets] -test = ["Documenter", "FileIO", "ImageMagick", "SparseArrays", "Test"] +test = ["Documenter", "FileIO", "ImageMagick", "SparseArrays", "Test", "TestImages", "ImageTransformations"] diff --git a/src/ImageSegmentation.jl b/src/ImageSegmentation.jl index d81cb7f..99e5cfe 100644 --- a/src/ImageSegmentation.jl +++ b/src/ImageSegmentation.jl @@ -5,6 +5,7 @@ import Base: show using LinearAlgebra, Statistics using DataStructures, StaticArrays, ImageCore, ImageFiltering, ImageMorphology, LightGraphs, SimpleWeightedGraphs, RegionTrees, Distances, StaticArrays, Clustering, MetaGraphs using ImageCore.ColorVectorSpace: MathTypes +using ImageBase.ImageCore: GenericGrayImage, GenericImage import Clustering: kmeans, fuzzy_cmeans const PairOrTuple{K,V} = Union{Pair{K,V},Tuple{K,V}} @@ -21,6 +22,7 @@ include("meanshift.jl") include("clustering.jl") include("merge_segments.jl") include("deprecations.jl") +include("chan_vese.jl") export #accessor methods @@ -49,6 +51,7 @@ export kmeans, fuzzy_cmeans, merge_segments, + chan_vese, # types SegmentedImage, diff --git a/src/chan_vese.jl b/src/chan_vese.jl index 108e98f..e7a3175 100644 --- a/src/chan_vese.jl +++ b/src/chan_vese.jl @@ -1,85 +1,108 @@ -using MosaicViews -using LazyArrays -using BenchmarkTools -using Images, TestImages -using ImageBase.ImageCore: GenericGrayImage, GenericImage - -function calculate_averages(img::AbstractArray{T, N}, H𝚽::AbstractArray{T, M}) where {T<:Real, N, M} - H𝚽ⁱ = @. 1. - H𝚽 - ∫H𝚽 = sum(H𝚽) - ∫H𝚽ⁱ = sum(H𝚽ⁱ) - if ndims(img) == 2 - ∫uβ‚€H𝚽 = sum(img .* H𝚽) - ∫uβ‚€H𝚽ⁱ = sum(img .* H𝚽ⁱ) - elseif ndims(img) == 3 - ∫uβ‚€H𝚽 = sum(img .* H𝚽, dims=(1, 2)) - ∫uβ‚€H𝚽ⁱ = sum(img .* H𝚽ⁱ, dims=(1, 2)) - end - if ∫H𝚽 != 0 - c₁ = ∫uβ‚€H𝚽 / ∫H𝚽 - end - if ∫H𝚽ⁱ != 0 - cβ‚‚ = ∫uβ‚€H𝚽ⁱ / ∫H𝚽ⁱ - end +""" + chan_vese(img; ΞΌ, λ₁, Ξ»β‚‚, tol, max_iter, Ξ”t, reinitial_flag) - return c₁, cβ‚‚ -end +Segments image `img` by evolving a level set. An active contour model +which can be used to segment objects without clearly defined boundaries. -function difference_from_average_term(img::AbstractArray{T, N}, H𝚽::AbstractArray{T, M}, λ₁::Float64, Ξ»β‚‚::Float64) where {T<:Real, N, M} - c₁, cβ‚‚ = calculate_averages(img, H𝚽) +# output +Return a `BitMatrix`. - if ndims(img) == 2 - return @. -λ₁ * (img - c₁)^2 + Ξ»β‚‚ * (img - cβ‚‚)^2 - elseif ndims(img) == 3 - return -λ₁ .* sum((img .- c₁).^2, dims=3) .+ Ξ»β‚‚ .* sum((img .- cβ‚‚).^2, dims=3) - end -end -# H𝚽 = LazyArray(@~ @. 1. * (𝚽ⁿ > 0)) -function _calculate_averages(img::AbstractArray{T, N}, 𝚽ⁿ::AbstractArray{T, M}) where {T<:Real, N, M} - ∫H𝚽 = ∫H𝚽ⁱ = ∫uβ‚€H𝚽 = ∫uβ‚€H𝚽ⁱ = 0 - - for i in CartesianIndices(img) - H𝚽 = 1. * (𝚽ⁿ[i] > 0) - H𝚽ⁱ = 1. - H𝚽 - ∫H𝚽 += H𝚽 - ∫H𝚽ⁱ += H𝚽ⁱ - ∫uβ‚€H𝚽 += img[i] * H𝚽 - ∫uβ‚€H𝚽ⁱ += img[i] * H𝚽ⁱ - end - if ∫H𝚽 != 0 - c₁ = ∫uβ‚€H𝚽 ./ ∫H𝚽 - end - if ∫H𝚽ⁱ != 0 - cβ‚‚ = ∫uβ‚€H𝚽ⁱ ./ ∫H𝚽ⁱ - end +# Details - return c₁, cβ‚‚ -end +Chan-Vese algorithm deals quite well even with images which are quite +difficult to segment. Since CV algorithm relies on global properties, +rather than just taking local properties under consideration, such as +gradient. Better robustness for noise is one of the main advantages of +this algorithm. See [1], [2], [3] for more details. -function Ξ΄β‚•(x::AbstractArray{T,N}, h::Float64=1.0) where {T<:Real, N} - return @~ @. h / (h^2 + x^2) -end +# Options -function initial_level_set(shape::Tuple) - xβ‚€ = reshape(collect(0:shape[begin]-1), shape[begin], 1) - yβ‚€ = reshape(collect(0:shape[begin+1]-1), 1, shape[begin+1]) - πš½β‚€ = @. sin(pi / 5 * xβ‚€) * sin(pi / 5 * yβ‚€) -end +The function argument is described in detail below. + +Denote the edge set curve with 𝐢 in the following part. + +## `ΞΌ::Float64` + +The argument `ΞΌ` is a weight controlling the penalty on the total length +of the curve 𝐢; + +For example, if the boundaries of the image are quite smooth, a larger `ΞΌ` +can prevent 𝐢 from being a complex curve. + +Default: 0.25 + +## `λ₁::Float64`, `Ξ»β‚‚::Float64` + +The argument `λ₁` and `Ξ»β‚‚` affect the desired uniformity inside 𝐢 and +outside 𝐢, respectively. + +For example, if set `λ₁` < `Ξ»β‚‚`, we are more possible to get result with +quite uniform background and varying grayscale objects in the foreground. + +Default: λ₁ = 1.0 + Ξ»β‚‚ = 1.0 + +## `tol::Float64` + +The argument `tol` controls the level set variation tolerance between +iteration. If the L2 norm difference between two level sets of adjacent +iterations is below `tol`, then the solution will be assumed to be reached. + +Default: 1e-3 + +## `max_iter::Int64` + +The argument `max_iter` controls the maximum of iteration number. + +Default: 500 +## `Ξ”t::Float64` + +The argument `Ξ”t` is a multiplication factor applied at calculations +for each step, serves to accelerate the algorithm. Although larger `Ξ”t` +can speed up the algorithm, it might prevent algorithm from converging to +the solution. + +Default: 0.5 + +## reinitial_flag::Bool + +The arguement `reinitial_flag` controls whether to reinitialize the +level set in each step. + +Default: false + +# Examples + +```julia +using TestImages +using ImageSegmentation + +img = testimage("cameraman") + +cv_result = chan_vese(img, ΞΌ=0.25, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-3, max_iter=200, Ξ”t=0.5, reinitial_flag=false) +``` + +# References + +[1] An Active Contour Model without Edges, Tony Chan and Luminita Vese, + Scale-Space Theories in Computer Vision, 1999, :DOI:`10.1007/3-540-48236-9_13` +[2] Chan-Vese Segmentation, Pascal Getreuer Image Processing On Line, 2 (2012), + pp. 214-224, :DOI:`10.5201/ipol.2012.g-cv` +[3] The Chan-Vese Algorithm - Project Report, Rami Cohen, 2011 :arXiv:`1107.2782` +""" function chan_vese(img::GenericGrayImage; - ΞΌ::Float64=0.25, - λ₁::Float64=1.0, - Ξ»β‚‚::Float64=1.0, - tol::Float64=1e-3, - max_iter::Int64=500, - Ξ”t::Float64=0.5, - reinitial_flag::Bool=false) #where {T<:Real, N} + ΞΌ::Float64=0.25, + λ₁::Float64=1.0, + Ξ»β‚‚::Float64=1.0, + tol::Float64=1e-3, + max_iter::Int64=500, + Ξ”t::Float64=0.5, + reinitial_flag::Bool=false) + # Signs used in the codes and comments mainly follow paper[3] in the References. img = float64.(channelview(img)) iter = 0 h = 1.0 - m, n = size(img) - s = m * n - 𝚽ⁿ = initial_level_set((m, n)) # size: m * n del = tol + 1 img .= img .- minimum(img) @@ -87,166 +110,149 @@ function chan_vese(img::GenericGrayImage; img .= img ./ maximum(img) end - diff = 0 - H𝚽 = similar(𝚽ⁿ) - uβ‚€H𝚽 = similar(img) - ∫uβ‚€ = sum(img) - πš½α΅’β‚ŠαΆœ = zeros(m, 1) + # Precalculation of some constants which helps simplify some integration + area = length(img) # area = ∫H𝚽 + ∫H𝚽ⁱ + ∫uβ‚€ = sum(img) # ∫uβ‚€ = ∫uβ‚€H𝚽 + ∫uβ‚€H𝚽ⁱ + # Initialize the level set + 𝚽ⁿ = initial_level_set(size(img)) + # Preallocation and initializtion + H𝚽 = trues(size(img)...) + 𝚽ⁿ⁺¹ = similar(𝚽ⁿ) + # The upper bounds of 𝚽ⁿ's coordinates is `m` and `n` + s, t = first(CartesianIndices(𝚽ⁿ))[1], first(CartesianIndices(𝚽ⁿ))[2] + m, n = last(CartesianIndices(𝚽ⁿ))[1], last(CartesianIndices(𝚽ⁿ))[2] + while (del > tol) & (iter < max_iter) - Ο΅ = 1e-16 - - @. H𝚽 = 1. * (𝚽ⁿ > 0) # size = (m, n) - @. uβ‚€H𝚽 = img * H𝚽 # size = (m, n) or (m, n, 3) - - ∫H𝚽 = sum(H𝚽) - ∫uβ‚€H𝚽 = sum(uβ‚€H𝚽) # (1,) - ∫H𝚽ⁱ = s - ∫H𝚽 - ∫uβ‚€H𝚽ⁱ = ∫uβ‚€ - ∫uβ‚€H𝚽 + Ο΅ = 1e-8 + diff = 0 - if ∫H𝚽 != 0 - c₁ = ∫uβ‚€H𝚽 ./ ∫H𝚽 - end - if ∫H𝚽ⁱ != 0 - cβ‚‚ = ∫uβ‚€H𝚽ⁱ ./ ∫H𝚽ⁱ + # Calculate the average intensities + @. H𝚽 = 𝚽ⁿ > 0 # Heaviside function + c₁, cβ‚‚ = calculate_averages(img, H𝚽, area, ∫uβ‚€) # Compute c₁(𝚽ⁿ), cβ‚‚(𝚽ⁿ) + + # Calculate the variation of level set 𝚽ⁿ + for idx in CartesianIndices(𝚽ⁿ) # Denote idx = (x, y) + # iβ‚Š ≔ iβ‚Š(x, y), denotes 𝚽ⁿ(x, y + 1)'s CartesianIndex + # jβ‚Š ≔ jβ‚Š(x, y), denotes 𝚽ⁿ(x + 1, y)'s CartesianIndex + # iβ‚‹ ≔ iβ‚‹(x, y), denotes 𝚽ⁿ(x, y - 1)'s CartesianIndex + # jβ‚‹ ≔ jβ‚‹(x, y), denotes 𝚽ⁿ(x - 1, y)'s CartesianIndex + # Taking notice that if 𝚽ⁿ(x, y) is the boundary of 𝚽ⁿ, than 𝚽ⁿ(x Β± 1, y), 𝚽ⁿ(x, y Β± 1) might be out of bound. + # So the pixel values of these outbounded terms are equal to 𝚽ⁿ(x, y) + iβ‚Š = idx[2] != n ? idx + CartesianIndex(0, 1) : idx + jβ‚Š = idx[1] != m ? idx + CartesianIndex(1, 0) : idx + iβ‚‹ = idx[2] != t ? idx - CartesianIndex(0, 1) : idx + jβ‚‹ = idx[1] != s ? idx - CartesianIndex(1, 0) : idx + + πš½β‚€ = 𝚽ⁿ[idx] # 𝚽ⁿ(x, y) + uβ‚€ = img[idx] # uβ‚€(x, y) + πš½α΅’β‚Š = 𝚽ⁿ[iβ‚Š] # 𝚽ⁿ(x, y + 1) + πš½β±Όβ‚Š = 𝚽ⁿ[jβ‚Š] # 𝚽ⁿ(x + 1, y) + πš½α΅’β‚‹ = 𝚽ⁿ[iβ‚‹] # 𝚽ⁿ(x, y - 1) + πš½β±Όβ‚‹ = 𝚽ⁿ[jβ‚‹] # 𝚽ⁿ(x - 1, y) + + # Solve the PDE of equation 9 in paper[3] + C₁ = 1. / sqrt(Ο΅ + (πš½α΅’β‚Š - πš½β‚€)^2 + (πš½β±Όβ‚Š - πš½β±Όβ‚‹)^2 / 4.) + Cβ‚‚ = 1. / sqrt(Ο΅ + (πš½β‚€ - πš½α΅’β‚‹)^2 + (πš½β±Όβ‚Š - πš½β±Όβ‚‹)^2 / 4.) + C₃ = 1. / sqrt(Ο΅ + (πš½α΅’β‚Š - πš½α΅’β‚‹)^2 / 4. + (πš½β±Όβ‚Š - πš½β‚€)^2) + Cβ‚„ = 1. / sqrt(Ο΅ + (πš½α΅’β‚Š - πš½α΅’β‚‹)^2 / 4. + (πš½β‚€ - πš½β±Όβ‚‹)^2) + + K = πš½α΅’β‚Š * C₁ + πš½α΅’β‚‹ * Cβ‚‚ + πš½β±Όβ‚Š * C₃ + πš½β±Όβ‚‹ * Cβ‚„ + Ξ΄β‚• = h / (h^2 + πš½β‚€^2) # Regularised Dirac function + difference_from_average = - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2 + + 𝚽ⁿ⁺¹[idx] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K + difference_from_average)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) + diff += (𝚽 - πš½β‚€)^2 end - ind = CartesianIndices(reshape(collect(1 : 9), 3, 3)) .- CartesianIndex(2, 2) - πš½β±Όβ‚Š = 0 - - for y in 1:n-1 - πš½β±Όβ‚Š = 0 - for x in 1:m-1 - i = CartesianIndex(x, y) - πš½β‚€ = 𝚽ⁿ[i] - uβ‚€ = img[i] - πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] - πš½α΅’β‚ŠαΆœ[i[1]] = πš½α΅’β‚Š = 𝚽ⁿ[i + ind[2, 3]] - πš½β‚€ # except i[2] = n - πš½β±Όβ‚‹ = πš½β±Όβ‚Š - πš½β±Όβ‚Š = 𝚽ⁿ[i + ind[3, 2]] - πš½β‚€ # except i[2] = m - 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ - 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ - t1 = πš½β‚€ + πš½α΅’β‚Š - t2 = πš½β‚€ - πš½α΅’β‚‹ - t3 = πš½β‚€ + πš½β±Όβ‚Š - t4 = πš½β‚€ - πš½β±Όβ‚‹ - - C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) - Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) - C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) - Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) - - K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ - Ξ΄β‚• = h / (h^2 + πš½β‚€^2) - - 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) - diff += (𝚽 - πš½β‚€)^2 - end - i = CartesianIndex(m, y) - πš½β‚€ = 𝚽ⁿ[i] - uβ‚€ = img[i] - πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] - πš½α΅’β‚ŠαΆœ[i[1]] = πš½α΅’β‚Š = 𝚽ⁿ[i + ind[2, 3]] - πš½β‚€ # except i[2] = n - πš½β±Όβ‚‹ = πš½β±Όβ‚Š - πš½β±Όβ‚Š = 0 # except i[2] = m - 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ - 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ - t1 = πš½β‚€ + πš½α΅’β‚Š - t2 = πš½β‚€ - πš½α΅’β‚‹ - t3 = πš½β‚€ + πš½β±Όβ‚Š - t4 = πš½β‚€ - πš½β±Όβ‚‹ - - C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) - Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) - C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) - Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) - - K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ - Ξ΄β‚• = h / (h^2 + πš½β‚€^2) - - 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) - diff += (𝚽 - πš½β‚€)^2 - end + del = sqrt(diff / area) - πš½α΅’β‚Š = 0 - πš½β±Όβ‚Š = 0 - for x in 1:m-1 - i = CartesianIndex(x, n) - πš½β‚€ = 𝚽ⁿ[i] - uβ‚€ = img[i] - πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] - πš½α΅’β‚ŠαΆœ[i[1]] = 0 - πš½β±Όβ‚‹ = πš½β±Όβ‚Š - πš½β±Όβ‚Š = 𝚽ⁿ[i + ind[3, 2]] - πš½β‚€ # except i[2] = m - 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ - 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ - t1 = πš½β‚€ + πš½α΅’β‚Š - t2 = πš½β‚€ - πš½α΅’β‚‹ - t3 = πš½β‚€ + πš½β±Όβ‚Š - t4 = πš½β‚€ - πš½β±Όβ‚‹ - - C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) - Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) - C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) - Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) - - K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ - Ξ΄β‚• = h / (h^2 + πš½β‚€^2) - - 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) - diff += (𝚽 - πš½β‚€)^2 + if reinitial_flag + # Reinitialize 𝚽 to be the signed distance function to its zero level set + reinitialize(𝚽ⁿ⁺¹, 𝚽ⁿ, Ξ”t, h) + else + 𝚽ⁿ .= 𝚽ⁿ⁺¹ end - i = CartesianIndex(m, n) - πš½β‚€ = 𝚽ⁿ[i] - uβ‚€ = img[i] - πš½α΅’β‚‹ = πš½α΅’β‚ŠαΆœ[i[1]] - πš½α΅’β‚ŠαΆœ[i[1]] = 0 - πš½β±Όβ‚‹ = πš½β±Όβ‚Š - πš½β±Όβ‚Š = 0 - 𝚽ᡒ = πš½α΅’β‚Š + πš½α΅’β‚‹ - 𝚽ⱼ = πš½β±Όβ‚Š + πš½β±Όβ‚‹ - t1 = πš½β‚€ + πš½α΅’β‚Š - t2 = πš½β‚€ - πš½α΅’β‚‹ - t3 = πš½β‚€ + πš½β±Όβ‚Š - t4 = πš½β‚€ - πš½β±Όβ‚‹ - - C₁ = 1. / sqrt(Ο΅ + πš½α΅’β‚Š^2 + 𝚽ⱼ^2 / 4.) - Cβ‚‚ = 1. / sqrt(Ο΅ + πš½α΅’β‚‹^2 + 𝚽ⱼ^2 / 4.) - C₃ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚Š^2) - Cβ‚„ = 1. / sqrt(Ο΅ + 𝚽ᡒ^2 / 4. + πš½β±Όβ‚‹^2) - - K = t1 * C₁ + t2 * Cβ‚‚ + t3 * C₃ + t4 * Cβ‚„ - Ξ΄β‚• = h / (h^2 + πš½β‚€^2) - - 𝚽ⁿ[i] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) - diff += (𝚽 - πš½β‚€)^2 - - del = sqrt(diff / s) - diff = 0 - + iter += 1 end - return 𝚽ⁿ, iter + return 𝚽ⁿ .> 0 end -img_gray = testimage("cameraman") +function initial_level_set(shape::Tuple) + xβ‚€ = reshape(collect(0:shape[begin]-1), shape[begin], 1) + yβ‚€ = reshape(collect(0:shape[begin+1]-1), 1, shape[begin+1]) + πš½β‚€ = @. sin(pi / 5 * xβ‚€) * sin(pi / 5 * yβ‚€) +end -ΞΌ=0.25 -λ₁=1.0 -Ξ»β‚‚=1.0 -tol=1e-3 -max_iter=200 -Ξ”t=0.5 +function calculate_averages(img::AbstractArray{T, N}, H𝚽::AbstractArray{S, N}, area::Int64, ∫uβ‚€::Float64) where {T<:Real, S<:Bool, N} + ∫uβ‚€H𝚽 = 0 + ∫H𝚽 = 0 + for i in eachindex(img) + if H𝚽[i] + ∫uβ‚€H𝚽 += img[i] + ∫H𝚽 += 1 + end + end + ∫H𝚽ⁱ = area - ∫H𝚽 + ∫uβ‚€H𝚽ⁱ = ∫uβ‚€ - ∫uβ‚€H𝚽 + c₁ = ∫uβ‚€H𝚽 / max(1, ∫H𝚽) + cβ‚‚ = ∫uβ‚€H𝚽ⁱ / max(1, ∫H𝚽ⁱ) -𝚽, iter_num = chan_vese(img_gray, ΞΌ=0.25, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-3, max_iter=200, Ξ”t=0.5, reinitial_flag=false) + return c₁, cβ‚‚ +end -@btime chan_vese(img_gray, ΞΌ=0.25, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-3, max_iter=200, Ξ”t=0.5, reinitial_flag=false); +function calculate_reinitial(𝚽::AbstractArray{T, M}, 𝚿::AbstractArray{T, M}, Ξ”t::Float64, h::Float64) where {T<:Real, M} + Ο΅ = 1e-8 + + s, t = first(CartesianIndices(𝚽))[1], first(CartesianIndices(𝚽))[2] + m, n = last(CartesianIndices(𝚽))[1], last(CartesianIndices(𝚽))[2] + + for idx in CartesianIndices(𝚽) + iβ‚Š = idx[2] != n ? idx + CartesianIndex(0, 1) : idx + jβ‚Š = idx[1] != m ? idx + CartesianIndex(1, 0) : idx + iβ‚‹ = idx[2] != t ? idx - CartesianIndex(0, 1) : idx + jβ‚‹ = idx[1] != s ? idx - CartesianIndex(1, 0) : idx + πš½β‚€ = 𝚽[idx] # 𝚽(i, j) + πš½α΅’β‚Š = 𝚽[iβ‚Š] # 𝚽(i + 1, j) + πš½β±Όβ‚Š = 𝚽[jβ‚Š] # 𝚽(i, j + 1) + πš½α΅’β‚‹ = 𝚽[iβ‚‹] # 𝚽(i - 1, j) + πš½β±Όβ‚‹ = 𝚽[jβ‚‹] # 𝚽(i, j - 1) + + a = (πš½β‚€ - πš½α΅’β‚‹) / h + b = (πš½α΅’β‚Š - πš½β‚€) / h + c = (πš½β‚€ - πš½β±Όβ‚‹) / h + d = (πš½β±Όβ‚Š - πš½β‚€) / h + + a⁺ = max(a, 0) + a⁻ = min(a, 0) + b⁺ = max(b, 0) + b⁻ = min(b, 0) + c⁺ = max(c, 0) + c⁻ = min(c, 0) + d⁺ = max(d, 0) + d⁻ = min(d, 0) + + G = 0 + if πš½β‚€ > 0 + G += sqrt(max(a⁺^2, b⁻^2) + max(c⁺^2, d⁻^2)) - 1 + elseif πš½β‚€ < 0 + G += sqrt(max(a⁻^2, b⁺^2) + max(c⁻^2, d⁺^2)) - 1 + end + sign𝚽 = πš½β‚€ / sqrt(πš½β‚€^2 + Ο΅) + 𝚿[idx] = πš½β‚€ - Ξ”t * sign𝚽 * G + end -segmentation = 𝚽 .> 0 -print(iter_num) -𝚽 .= 𝚽 .- minimum(𝚽) + return 𝚿 +end -colorview(Gray, segmentation) \ No newline at end of file +function reinitialize(𝚽::AbstractArray{T, M}, 𝚿::AbstractArray{T, M}, Ξ”t::Float64, h::Float64, max_reiter::Int64=5) where {T<:Real, M} + iter = 0 + while iter < max_reiter + 𝚽 .= calculate_reinitial(𝚽, 𝚿, Ξ”t, h) + iter += 1 + end +end \ No newline at end of file diff --git a/test/chan_vese.jl b/test/chan_vese.jl new file mode 100644 index 0000000..eb0ab20 --- /dev/null +++ b/test/chan_vese.jl @@ -0,0 +1,13 @@ +@testset "chan_vese" begin + @info "Test: Chan Vese Segmentation" + + @testset "Gray Image Chan-Vese Segmentation Reference Test" begin + img_gray = imresize(testimage("cameraman"), (64, 64)) + ref = load("references/Chan_Vese_Gray.png") + ref = ref .> 0 + out = chan_vese(img_gray, ΞΌ=0.1, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-2, max_iter=200, Ξ”t=0.5, reinitial_flag=false) + @test eltype(out) == Bool + @test sum(out) == sum(ref) + @test out == ref + end +end \ No newline at end of file diff --git a/test/references/Chan_Vese_Gray.png b/test/references/Chan_Vese_Gray.png new file mode 100644 index 0000000000000000000000000000000000000000..5e84d54b3beb4cdc6e3d00c0c8b98eb68413046d GIT binary patch literal 466 zcmeAS@N?(olHy`uVBq!ia0vp^4j{|{BpCXc^q3eJ7-xFAIEF-UE3q&sg@Yp73aCg=SpWbT}ok`p0^SmG&QFd#)($>uS7p#N04o_763-EHT%fqYl1K zXOmRquBxPo_DNy)aCDVc16%zgId}bl4s($Xk?VD6o51cjQrr znk&sSLV1oXlRLV^P-u456t|-uYhKNk=nSnDR^GT$KS{+dOQS6*T-i`$chw{%x1?}? zr=uQkUMaa=km!t!b>Y-vd$d^3snauA!S0pPlo=s5-M+D{#}<9mF)J06THWQoamDO_ zjVmfdx_5Dku6AoZ<}SFpO04_V(M27uv8`SGw~nq++qh!&g&U!BuBwQY3Yzdq@jvp9 zWfk4swfjeKxZ}}vkM#asaSeF1;E|eGshCM`bJy&MtDYAuvhN&O*4NZExoh=}D~=a_ zIOe=k&?pQm6r63vAr&qvzHw#qg2LcJvDvp+Ro7{qOA2Lo?3{fpa?LA+j6X_Yrru|p zj_D_bZoZ;YC%$^t(zK78Bd)4siP?9D`YwWUg!cbtUl-eE+k0{2R8VAjy85}Sb4q9e E0I1W%p8x;= literal 0 HcmV?d00001 diff --git a/test/runtests.jl b/test/runtests.jl index 47c869f..4d64534 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -1,4 +1,5 @@ using ImageSegmentation, ImageCore, ImageFiltering, Test, SimpleWeightedGraphs, LightGraphs, StaticArrays, DataStructures +using FileIO, ImageTransformations, TestImages using RegionTrees: isleaf, Cell, split! using MetaGraphs: MetaGraph, clear_props!, get_prop, has_prop, set_prop!, props, vertices @@ -6,12 +7,13 @@ using Documenter Base.VERSION >= v"1.6" && doctest(ImageSegmentation, manual = false) @test isempty(detect_ambiguities(ImageSegmentation)) -include("core.jl") -include("region_growing.jl") -include("felzenszwalb.jl") -include("fast_scanning.jl") -include("flood_fill.jl") -include("watershed.jl") -include("region_merging.jl") -include("meanshift.jl") -include("merge_segments.jl") +# include("core.jl") +# include("region_growing.jl") +# include("felzenszwalb.jl") +# include("fast_scanning.jl") +# include("flood_fill.jl") +# include("watershed.jl") +# include("region_merging.jl") +# include("meanshift.jl") +# include("merge_segments.jl") +include("chan_vese.jl") \ No newline at end of file From 9996e09cf77e1b7ebd46165f00f940e4a7790def Mon Sep 17 00:00:00 2001 From: JKay <2439951158@qq.com> Date: Tue, 21 Sep 2021 02:29:39 +0800 Subject: [PATCH 3/6] modify runtest.jl --- test/runtests.jl | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/test/runtests.jl b/test/runtests.jl index 4d64534..b660757 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -7,13 +7,13 @@ using Documenter Base.VERSION >= v"1.6" && doctest(ImageSegmentation, manual = false) @test isempty(detect_ambiguities(ImageSegmentation)) -# include("core.jl") -# include("region_growing.jl") -# include("felzenszwalb.jl") -# include("fast_scanning.jl") -# include("flood_fill.jl") -# include("watershed.jl") -# include("region_merging.jl") -# include("meanshift.jl") -# include("merge_segments.jl") +include("core.jl") +include("region_growing.jl") +include("felzenszwalb.jl") +include("fast_scanning.jl") +include("flood_fill.jl") +include("watershed.jl") +include("region_merging.jl") +include("meanshift.jl") +include("merge_segments.jl") include("chan_vese.jl") \ No newline at end of file From 7e3828ddbfea4cb880c0ea4d89eafd63a136a185 Mon Sep 17 00:00:00 2001 From: JKay <2439951158@qq.com> Date: Thu, 23 Sep 2021 23:26:53 +0800 Subject: [PATCH 4/6] generic implementation for N dims --- src/chan_vese.jl | 106 ++++++++++++++++++---------------------------- test/chan_vese.jl | 2 +- 2 files changed, 42 insertions(+), 66 deletions(-) diff --git a/src/chan_vese.jl b/src/chan_vese.jl index e7a3175..9b115b7 100644 --- a/src/chan_vese.jl +++ b/src/chan_vese.jl @@ -1,5 +1,5 @@ """ - chan_vese(img; ΞΌ, λ₁, Ξ»β‚‚, tol, max_iter, Ξ”t, reinitial_flag) + chan_vese(img; [ΞΌ], [λ₁], [Ξ»β‚‚], [tol], [max_iter], [Ξ”t], [reinitial_flag]) Segments image `img` by evolving a level set. An active contour model which can be used to segment objects without clearly defined boundaries. @@ -50,7 +50,7 @@ iterations is below `tol`, then the solution will be assumed to be reached. Default: 1e-3 -## `max_iter::Int64` +## `max_iter::Int` The argument `max_iter` controls the maximum of iteration number. @@ -80,7 +80,7 @@ using ImageSegmentation img = testimage("cameraman") -cv_result = chan_vese(img, ΞΌ=0.25, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-3, max_iter=200, Ξ”t=0.5, reinitial_flag=false) +cv_result = chan_vese(img, max_iter=200) ``` # References @@ -96,11 +96,12 @@ function chan_vese(img::GenericGrayImage; λ₁::Float64=1.0, Ξ»β‚‚::Float64=1.0, tol::Float64=1e-3, - max_iter::Int64=500, + max_iter::Int=500, Ξ”t::Float64=0.5, reinitial_flag::Bool=false) # Signs used in the codes and comments mainly follow paper[3] in the References. img = float64.(channelview(img)) + N = ndims(img) iter = 0 h = 1.0 del = tol + 1 @@ -111,6 +112,7 @@ function chan_vese(img::GenericGrayImage; end # Precalculation of some constants which helps simplify some integration + # area = length(img) # area = ∫H𝚽 + ∫H𝚽ⁱ area = length(img) # area = ∫H𝚽 + ∫H𝚽ⁱ ∫uβ‚€ = sum(img) # ∫uβ‚€ = ∫uβ‚€H𝚽 + ∫uβ‚€H𝚽ⁱ @@ -121,9 +123,9 @@ function chan_vese(img::GenericGrayImage; H𝚽 = trues(size(img)...) 𝚽ⁿ⁺¹ = similar(𝚽ⁿ) - # The upper bounds of 𝚽ⁿ's coordinates is `m` and `n` - s, t = first(CartesianIndices(𝚽ⁿ))[1], first(CartesianIndices(𝚽ⁿ))[2] - m, n = last(CartesianIndices(𝚽ⁿ))[1], last(CartesianIndices(𝚽ⁿ))[2] + Ξ” = ntuple(d -> CartesianIndex(ntuple(i -> i == d ? 1 : 0, N)), N) + idx_first = first(CartesianIndices(𝚽ⁿ)) + idx_last = last(CartesianIndices(𝚽ⁿ)) while (del > tol) & (iter < max_iter) Ο΅ = 1e-8 @@ -134,36 +136,23 @@ function chan_vese(img::GenericGrayImage; c₁, cβ‚‚ = calculate_averages(img, H𝚽, area, ∫uβ‚€) # Compute c₁(𝚽ⁿ), cβ‚‚(𝚽ⁿ) # Calculate the variation of level set 𝚽ⁿ - for idx in CartesianIndices(𝚽ⁿ) # Denote idx = (x, y) - # iβ‚Š ≔ iβ‚Š(x, y), denotes 𝚽ⁿ(x, y + 1)'s CartesianIndex - # jβ‚Š ≔ jβ‚Š(x, y), denotes 𝚽ⁿ(x + 1, y)'s CartesianIndex - # iβ‚‹ ≔ iβ‚‹(x, y), denotes 𝚽ⁿ(x, y - 1)'s CartesianIndex - # jβ‚‹ ≔ jβ‚‹(x, y), denotes 𝚽ⁿ(x - 1, y)'s CartesianIndex - # Taking notice that if 𝚽ⁿ(x, y) is the boundary of 𝚽ⁿ, than 𝚽ⁿ(x Β± 1, y), 𝚽ⁿ(x, y Β± 1) might be out of bound. - # So the pixel values of these outbounded terms are equal to 𝚽ⁿ(x, y) - iβ‚Š = idx[2] != n ? idx + CartesianIndex(0, 1) : idx - jβ‚Š = idx[1] != m ? idx + CartesianIndex(1, 0) : idx - iβ‚‹ = idx[2] != t ? idx - CartesianIndex(0, 1) : idx - jβ‚‹ = idx[1] != s ? idx - CartesianIndex(1, 0) : idx - + @inbounds @simd for idx in CartesianIndices(𝚽ⁿ) πš½β‚€ = 𝚽ⁿ[idx] # 𝚽ⁿ(x, y) - uβ‚€ = img[idx] # uβ‚€(x, y) - πš½α΅’β‚Š = 𝚽ⁿ[iβ‚Š] # 𝚽ⁿ(x, y + 1) - πš½β±Όβ‚Š = 𝚽ⁿ[jβ‚Š] # 𝚽ⁿ(x + 1, y) - πš½α΅’β‚‹ = 𝚽ⁿ[iβ‚‹] # 𝚽ⁿ(x, y - 1) - πš½β±Όβ‚‹ = 𝚽ⁿ[jβ‚‹] # 𝚽ⁿ(x - 1, y) + uβ‚€ = img[idx] # uβ‚€(x, y) + Ξ”β‚Š = ntuple(d -> idx[d] != idx_last[d] ? idx + Ξ”[d] : idx, N) + Ξ”β‚‹ = ntuple(d -> idx[d] != idx_first[d] ? idx - Ξ”[d] : idx, N) + πš½β‚Š = broadcast(i -> 𝚽ⁿ[i], Ξ”β‚Š) + πš½β‚‹ = broadcast(i -> 𝚽ⁿ[i], Ξ”β‚‹) # Solve the PDE of equation 9 in paper[3] - C₁ = 1. / sqrt(Ο΅ + (πš½α΅’β‚Š - πš½β‚€)^2 + (πš½β±Όβ‚Š - πš½β±Όβ‚‹)^2 / 4.) - Cβ‚‚ = 1. / sqrt(Ο΅ + (πš½β‚€ - πš½α΅’β‚‹)^2 + (πš½β±Όβ‚Š - πš½β±Όβ‚‹)^2 / 4.) - C₃ = 1. / sqrt(Ο΅ + (πš½α΅’β‚Š - πš½α΅’β‚‹)^2 / 4. + (πš½β±Όβ‚Š - πš½β‚€)^2) - Cβ‚„ = 1. / sqrt(Ο΅ + (πš½α΅’β‚Š - πš½α΅’β‚‹)^2 / 4. + (πš½β‚€ - πš½β±Όβ‚‹)^2) + Cβ‚Š = ntuple(d -> 1. / sqrt(Ο΅ + (πš½β‚Š[d] - πš½β‚€)^2 + (πš½β‚Š[d % N + 1] - πš½β‚‹[d % N + 1])^2 / 4.), N) + Cβ‚‹ = ntuple(d -> 1. / sqrt(Ο΅ + (πš½β‚‹[d] - πš½β‚€)^2 + (πš½β‚Š[d % N + 1] - πš½β‚‹[d % N + 1])^2 / 4.), N) - K = πš½α΅’β‚Š * C₁ + πš½α΅’β‚‹ * Cβ‚‚ + πš½β±Όβ‚Š * C₃ + πš½β±Όβ‚‹ * Cβ‚„ + K = sum(πš½β‚Š .* Cβ‚Š) + sum(πš½β‚‹ .* Cβ‚‹) Ξ΄β‚• = h / (h^2 + πš½β‚€^2) # Regularised Dirac function difference_from_average = - λ₁ * (uβ‚€ - c₁) ^ 2 + Ξ»β‚‚ * (uβ‚€ - cβ‚‚) ^ 2 - 𝚽ⁿ⁺¹[idx] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K + difference_from_average)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (C₁ + Cβ‚‚ + C₃ + Cβ‚„)) + 𝚽ⁿ⁺¹[idx] = 𝚽 = (πš½β‚€ + Ξ”t * Ξ΄β‚• * (ΞΌ * K + difference_from_average)) / (1. + ΞΌ * Ξ”t * Ξ΄β‚• * (sum(Cβ‚Š) + sum(Cβ‚‹))) diff += (𝚽 - πš½β‚€)^2 end @@ -171,7 +160,7 @@ function chan_vese(img::GenericGrayImage; if reinitial_flag # Reinitialize 𝚽 to be the signed distance function to its zero level set - reinitialize(𝚽ⁿ⁺¹, 𝚽ⁿ, Ξ”t, h) + reinitialize!(𝚽ⁿ⁺¹, 𝚽ⁿ, Ξ”t, h) else 𝚽ⁿ .= 𝚽ⁿ⁺¹ end @@ -191,7 +180,7 @@ end function calculate_averages(img::AbstractArray{T, N}, H𝚽::AbstractArray{S, N}, area::Int64, ∫uβ‚€::Float64) where {T<:Real, S<:Bool, N} ∫uβ‚€H𝚽 = 0 ∫H𝚽 = 0 - for i in eachindex(img) + @inbounds for i in eachindex(img) if H𝚽[i] ∫uβ‚€H𝚽 += img[i] ∫H𝚽 += 1 @@ -207,40 +196,29 @@ end function calculate_reinitial(𝚽::AbstractArray{T, M}, 𝚿::AbstractArray{T, M}, Ξ”t::Float64, h::Float64) where {T<:Real, M} Ο΅ = 1e-8 + N = ndims(𝚽) + + Ξ” = ntuple(d -> CartesianIndex(ntuple(i -> i == d ? 1 : 0, N)), N) + idx_first = first(CartesianIndices(𝚽)) + idx_last = last(CartesianIndices(𝚽)) + + @inbounds @simd for idx in CartesianIndices(𝚽) + πš½β‚€ = 𝚽[idx] # 𝚽ⁿ(x, y) + Ξ”β‚Š = ntuple(d -> idx[d] != idx_last[d] ? idx + Ξ”[d] : idx, N) + Ξ”β‚‹ = ntuple(d -> idx[d] != idx_first[d] ? idx - Ξ”[d] : idx, N) + Ξ”πš½β‚Š = broadcast(i -> (𝚽[i] - πš½β‚€) / h, Ξ”β‚Š) + Ξ”πš½β‚‹ = broadcast(i -> (πš½β‚€ - 𝚽[i]) / h, Ξ”β‚‹) - s, t = first(CartesianIndices(𝚽))[1], first(CartesianIndices(𝚽))[2] - m, n = last(CartesianIndices(𝚽))[1], last(CartesianIndices(𝚽))[2] - - for idx in CartesianIndices(𝚽) - iβ‚Š = idx[2] != n ? idx + CartesianIndex(0, 1) : idx - jβ‚Š = idx[1] != m ? idx + CartesianIndex(1, 0) : idx - iβ‚‹ = idx[2] != t ? idx - CartesianIndex(0, 1) : idx - jβ‚‹ = idx[1] != s ? idx - CartesianIndex(1, 0) : idx - πš½β‚€ = 𝚽[idx] # 𝚽(i, j) - πš½α΅’β‚Š = 𝚽[iβ‚Š] # 𝚽(i + 1, j) - πš½β±Όβ‚Š = 𝚽[jβ‚Š] # 𝚽(i, j + 1) - πš½α΅’β‚‹ = 𝚽[iβ‚‹] # 𝚽(i - 1, j) - πš½β±Όβ‚‹ = 𝚽[jβ‚‹] # 𝚽(i, j - 1) - - a = (πš½β‚€ - πš½α΅’β‚‹) / h - b = (πš½α΅’β‚Š - πš½β‚€) / h - c = (πš½β‚€ - πš½β±Όβ‚‹) / h - d = (πš½β±Όβ‚Š - πš½β‚€) / h - - a⁺ = max(a, 0) - a⁻ = min(a, 0) - b⁺ = max(b, 0) - b⁻ = min(b, 0) - c⁺ = max(c, 0) - c⁻ = min(c, 0) - d⁺ = max(d, 0) - d⁻ = min(d, 0) + maxΞ”πš½β‚Š = max.(Ξ”πš½β‚Š, 0) + minΞ”πš½β‚Š = min.(Ξ”πš½β‚Š, 0) + maxΞ”πš½β‚‹ = max.(Ξ”πš½β‚‹, 0) + minΞ”πš½β‚‹ = min.(Ξ”πš½β‚‹, 0) G = 0 if πš½β‚€ > 0 - G += sqrt(max(a⁺^2, b⁻^2) + max(c⁺^2, d⁻^2)) - 1 + G += sqrt(sum(max.(minΞ”πš½β‚Š.^2, maxΞ”πš½β‚‹.^2))) - 1 elseif πš½β‚€ < 0 - G += sqrt(max(a⁻^2, b⁺^2) + max(c⁻^2, d⁺^2)) - 1 + G += sqrt(sum(max.(maxΞ”πš½β‚Š.^2, minΞ”πš½β‚‹.^2))) - 1 end sign𝚽 = πš½β‚€ / sqrt(πš½β‚€^2 + Ο΅) 𝚿[idx] = πš½β‚€ - Ξ”t * sign𝚽 * G @@ -249,10 +227,8 @@ function calculate_reinitial(𝚽::AbstractArray{T, M}, 𝚿::AbstractArray{T, M return 𝚿 end -function reinitialize(𝚽::AbstractArray{T, M}, 𝚿::AbstractArray{T, M}, Ξ”t::Float64, h::Float64, max_reiter::Int64=5) where {T<:Real, M} - iter = 0 - while iter < max_reiter +function reinitialize!(𝚽::AbstractArray{T, M}, 𝚿::AbstractArray{T, M}, Ξ”t::Float64, h::Float64, max_reiter::Int=5) where {T<:Real, M} + for i in 1 : max_reiter 𝚽 .= calculate_reinitial(𝚽, 𝚿, Ξ”t, h) - iter += 1 end end \ No newline at end of file diff --git a/test/chan_vese.jl b/test/chan_vese.jl index eb0ab20..23d93e1 100644 --- a/test/chan_vese.jl +++ b/test/chan_vese.jl @@ -5,7 +5,7 @@ img_gray = imresize(testimage("cameraman"), (64, 64)) ref = load("references/Chan_Vese_Gray.png") ref = ref .> 0 - out = chan_vese(img_gray, ΞΌ=0.1, λ₁=1.0, Ξ»β‚‚=1.0, tol=1e-2, max_iter=200, Ξ”t=0.5, reinitial_flag=false) + out = chan_vese(img_gray, ΞΌ=0.1, tol=1e-2, max_iter=200) @test eltype(out) == Bool @test sum(out) == sum(ref) @test out == ref From 9e07ebcb9e4195e9548ffab9824e759f57aec4ee Mon Sep 17 00:00:00 2001 From: JKay <2439951158@qq.com> Date: Fri, 24 Sep 2021 13:07:52 +0800 Subject: [PATCH 5/6] make the chan_vese function available for 3D image --- src/chan_vese.jl | 21 ++++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/src/chan_vese.jl b/src/chan_vese.jl index 9b115b7..ab17770 100644 --- a/src/chan_vese.jl +++ b/src/chan_vese.jl @@ -139,14 +139,14 @@ function chan_vese(img::GenericGrayImage; @inbounds @simd for idx in CartesianIndices(𝚽ⁿ) πš½β‚€ = 𝚽ⁿ[idx] # 𝚽ⁿ(x, y) uβ‚€ = img[idx] # uβ‚€(x, y) - Ξ”β‚Š = ntuple(d -> idx[d] != idx_last[d] ? idx + Ξ”[d] : idx, N) - Ξ”β‚‹ = ntuple(d -> idx[d] != idx_first[d] ? idx - Ξ”[d] : idx, N) - πš½β‚Š = broadcast(i -> 𝚽ⁿ[i], Ξ”β‚Š) - πš½β‚‹ = broadcast(i -> 𝚽ⁿ[i], Ξ”β‚‹) + πš½β‚Š = broadcast(i->𝚽ⁿ[i], ntuple(d -> idx[d] != idx_last[d] ? idx + Ξ”[d] : idx, N)) + πš½β‚‹ = broadcast(i->𝚽ⁿ[i], ntuple(d -> idx[d] != idx_first[d] ? idx - Ξ”[d] : idx, N)) # Solve the PDE of equation 9 in paper[3] - Cβ‚Š = ntuple(d -> 1. / sqrt(Ο΅ + (πš½β‚Š[d] - πš½β‚€)^2 + (πš½β‚Š[d % N + 1] - πš½β‚‹[d % N + 1])^2 / 4.), N) - Cβ‚‹ = ntuple(d -> 1. / sqrt(Ο΅ + (πš½β‚‹[d] - πš½β‚€)^2 + (πš½β‚Š[d % N + 1] - πš½β‚‹[d % N + 1])^2 / 4.), N) + center_diff = ntuple(d -> (πš½β‚Š[d] - πš½β‚‹[d])^2 / 4., N) + sum_center_diff = sum(center_diff) + Cβ‚Š = ntuple(d -> 1. / sqrt(Ο΅ + (πš½β‚Š[d] - πš½β‚€)^2 + sum_center_diff - center_diff[d]), N) + Cβ‚‹ = ntuple(d -> 1. / sqrt(Ο΅ + (πš½β‚‹[d] - πš½β‚€)^2 + sum_center_diff - center_diff[d]), N) K = sum(πš½β‚Š .* Cβ‚Š) + sum(πš½β‚‹ .* Cβ‚‹) Ξ΄β‚• = h / (h^2 + πš½β‚€^2) # Regularised Dirac function @@ -171,12 +171,19 @@ function chan_vese(img::GenericGrayImage; return 𝚽ⁿ .> 0 end -function initial_level_set(shape::Tuple) +function initial_level_set(shape::Tuple{Int64, Int64}) xβ‚€ = reshape(collect(0:shape[begin]-1), shape[begin], 1) yβ‚€ = reshape(collect(0:shape[begin+1]-1), 1, shape[begin+1]) πš½β‚€ = @. sin(pi / 5 * xβ‚€) * sin(pi / 5 * yβ‚€) end +function initial_level_set(shape::Tuple{Int64, Int64, Int64}) + xβ‚€ = reshape(collect(0:shape[begin]-1), shape[begin], 1, 1) + yβ‚€ = reshape(collect(0:shape[begin+1]-1), 1, shape[begin+1], 1) + zβ‚€ = reshape(collect(0:shape[begin+2]-1), 1, 1, shape[begin+2]) + πš½β‚€ = @. sin(pi / 5 * xβ‚€) * sin(pi / 5 * yβ‚€) * sin(pi / 5 * zβ‚€) +end + function calculate_averages(img::AbstractArray{T, N}, H𝚽::AbstractArray{S, N}, area::Int64, ∫uβ‚€::Float64) where {T<:Real, S<:Bool, N} ∫uβ‚€H𝚽 = 0 ∫H𝚽 = 0 From 6395478ef69033202f2223835d3cfb3fd7ea0748 Mon Sep 17 00:00:00 2001 From: JKay <2439951158@qq.com> Date: Tue, 28 Sep 2021 21:22:40 +0800 Subject: [PATCH 6/6] make normalize and init level set be optimal, and some small modifications --- src/chan_vese.jl | 69 ++++++++++++++++++++++++++++------------------- test/chan_vese.jl | 2 +- 2 files changed, 42 insertions(+), 29 deletions(-) diff --git a/src/chan_vese.jl b/src/chan_vese.jl index ab17770..a3ec7c0 100644 --- a/src/chan_vese.jl +++ b/src/chan_vese.jl @@ -21,7 +21,7 @@ The function argument is described in detail below. Denote the edge set curve with 𝐢 in the following part. -## `ΞΌ::Float64` +## `ΞΌ::Real` The argument `ΞΌ` is a weight controlling the penalty on the total length of the curve 𝐢; @@ -31,7 +31,7 @@ can prevent 𝐢 from being a complex curve. Default: 0.25 -## `λ₁::Float64`, `Ξ»β‚‚::Float64` +## `λ₁::Real`, `Ξ»β‚‚::Real` The argument `λ₁` and `Ξ»β‚‚` affect the desired uniformity inside 𝐢 and outside 𝐢, respectively. @@ -42,7 +42,7 @@ quite uniform background and varying grayscale objects in the foreground. Default: λ₁ = 1.0 Ξ»β‚‚ = 1.0 -## `tol::Float64` +## `tol::Real` The argument `tol` controls the level set variation tolerance between iteration. If the L2 norm difference between two level sets of adjacent @@ -56,7 +56,7 @@ The argument `max_iter` controls the maximum of iteration number. Default: 500 -## `Ξ”t::Float64` +## `Ξ”t::Real` The argument `Ξ”t` is a multiplication factor applied at calculations for each step, serves to accelerate the algorithm. Although larger `Ξ”t` @@ -65,13 +65,23 @@ the solution. Default: 0.5 -## reinitial_flag::Bool +## normalize::Bool -The arguement `reinitial_flag` controls whether to reinitialize the -level set in each step. +The arguement `normalize` controls whether to normalize the input img. Default: false +## init_level_set + +The arguement `init_level_set` allows users to initalize the level set 𝚽⁰, +whose size should be the same as input image. + +If the default init level set is uesd, it will be defined as: +πš½β°β‚“ = ∏ sin(xα΅’ β‹… Ο€ / 5), where xα΅’ are pixel coordinates, i = 1, 2, β‹―, ndims(img). +This level set has fast convergence, but may fail to detect implicit edges. + +Default: initial_level_set(size(img)) + # Examples ```julia @@ -92,32 +102,34 @@ cv_result = chan_vese(img, max_iter=200) [3] The Chan-Vese Algorithm - Project Report, Rami Cohen, 2011 :arXiv:`1107.2782` """ function chan_vese(img::GenericGrayImage; - ΞΌ::Float64=0.25, - λ₁::Float64=1.0, - Ξ»β‚‚::Float64=1.0, - tol::Float64=1e-3, + ΞΌ::Real=0.25, + λ₁::Real=1.0, + Ξ»β‚‚::Real=1.0, + tol::Real=1e-3, max_iter::Int=500, - Ξ”t::Float64=0.5, - reinitial_flag::Bool=false) + Ξ”t::Real=0.5, + normalize::Bool=false, + init_level_set=initial_level_set(size(img))) # Signs used in the codes and comments mainly follow paper[3] in the References. + axes(img) == axes(init_level_set) || throw(ArgumentError("axes of input image and init_level_set should be equal. Instead they are $(axes(img)) and $(axes(init_level_set)).")) img = float64.(channelview(img)) N = ndims(img) iter = 0 h = 1.0 del = tol + 1 - img .= img .- minimum(img) - - if maximum(img) != 0 - img .= img ./ maximum(img) + if normalize + img .= img .- minimum(img) + if maximum(img) != 0 + img .= img ./ maximum(img) + end end - # Precalculation of some constants which helps simplify some integration - # area = length(img) # area = ∫H𝚽 + ∫H𝚽ⁱ - area = length(img) # area = ∫H𝚽 + ∫H𝚽ⁱ - ∫uβ‚€ = sum(img) # ∫uβ‚€ = ∫uβ‚€H𝚽 + ∫uβ‚€H𝚽ⁱ + # Precalculation of some constants which helps simplify some integration + area = length(img) # area = ∫H𝚽 + ∫H𝚽ⁱ + ∫uβ‚€ = sum(img) # ∫uβ‚€ = ∫uβ‚€H𝚽 + ∫uβ‚€H𝚽ⁱ # Initialize the level set - 𝚽ⁿ = initial_level_set(size(img)) + 𝚽ⁿ = init_level_set # Preallocation and initializtion H𝚽 = trues(size(img)...) @@ -158,12 +170,13 @@ function chan_vese(img::GenericGrayImage; del = sqrt(diff / area) - if reinitial_flag - # Reinitialize 𝚽 to be the signed distance function to its zero level set - reinitialize!(𝚽ⁿ⁺¹, 𝚽ⁿ, Ξ”t, h) - else - 𝚽ⁿ .= 𝚽ⁿ⁺¹ - end + # Reinitializing the level set is not strictly necessary, so this part of code is commented. + # If you wants to use the reinitialization, just uncommented codes following. + # Function `reinitialize!` is already prepared. + + # reinitialize!(𝚽ⁿ⁺¹, 𝚽ⁿ, Ξ”t, h) # Reinitialize 𝚽 to be the signed distance function to its zero level set + + 𝚽ⁿ .= 𝚽ⁿ⁺¹ iter += 1 end diff --git a/test/chan_vese.jl b/test/chan_vese.jl index 23d93e1..d9f494e 100644 --- a/test/chan_vese.jl +++ b/test/chan_vese.jl @@ -5,7 +5,7 @@ img_gray = imresize(testimage("cameraman"), (64, 64)) ref = load("references/Chan_Vese_Gray.png") ref = ref .> 0 - out = chan_vese(img_gray, ΞΌ=0.1, tol=1e-2, max_iter=200) + out = chan_vese(img_gray, ΞΌ=0.1, tol=1e-2, max_iter=200, normalize=true) @test eltype(out) == Bool @test sum(out) == sum(ref) @test out == ref